• 제목/요약/키워드: computational fluid dDynamics (CFD)

검색결과 365건 처리시간 0.031초

전산유체역학(CFD)를 활용한 정수공정에서 길이가 긴 유공관 설계 (Design of the long perforated pipe in water treatment process using CFD)

  • 조영만;유수전;노재순;빈재훈
    • 상하수도학회지
    • /
    • 제24권3호
    • /
    • pp.295-305
    • /
    • 2010
  • Role of the perforated pipe is to drain the water with equal pressure and velocity through the holes of perforated pipe. The perforated pipe is being used in many processes of water treatment system, however, the design parameter of perforated pipe is not standardized in korea. In this study, we have found the design parameter of perforated pipe in the water treatment system using the Computational Fluid Dynamics (CFD). The uniformity of outflow from the perforated pipe is directly affected according to area ratio(gross area of holes/surface area of the perforated pipe). In other words, the uniformity of outflow is improved as area ratio is smaller. Also, at the same area ratio, the uniformity of outflow is improved as number of holes is increase. Specially, in case of the two holes per length of pipe diameter(2/D) shows the most uniformity of outflow and the best hydraulic with the smaller pressure drop. The uniformity of outflow is aggravated and the pressure drop of pipe is decrease as length of pipe is longer. In case of that pipe length is 10m and above, the pressure drop decreased about 30% when diameter ratio is 40% with 0.2% of area ratio by comparison with 0.1% of area ratio.

구리가 함침된 하이드로탈사이트 촉매의 고유 키네틱 데이터를 이용한 메탄올 수증기 개질반응의 고정층 반응기 CFD 시뮬레이션 (FBR CFD Simulation of Steam Methanol Reforming Reaction using Intrinsic Kinetic Data of Copper-impregnated Hydrotalcite Catalyst)

  • 이재혁;신동일;안호근
    • 한국가스학회지
    • /
    • 제27권1호
    • /
    • pp.78-85
    • /
    • 2023
  • 구리가 함침된 하이드로탈사이트 촉매의 고유 키네틱 데이터를 이용하여 메탄올 수증기 개질 반응의 고정층 반응기 Computational Fluid Dynamics(CFD) 시뮬레이션을 수행하였다. 이전 연구결과로부터 얻어진 20wt%의 구리가 함침된 하이드로탈사이트 촉매의 활성화 에너지는 97.4 kJ/mol, 전 지수 인자는 5.904 × 1010를 이용하였다. 그리고 고유의 키네틱 데이터를 사용하여 반응온도 (200-450 ℃) 및 메탄올과 물의 몰비 변화에 따른 전환율을 관찰하였다. 또한 위의 키네틱 상수를 power law 모델을 사용하여 Axial 2D Symmetry 시뮬레이션을 통해 상용반응기(I.D. 0.05 - 0.1 m, Length 1 m)의 열 및 물질유동해석을 예측하였다.

CFturbo 설계 및 Fine/Turbo 유동해석을 활용한 빠르고 효과적인 터보압축기의 개발 과정 확립 (SETUP OF RAPID AND EFFICIENT PROCESS OF TURBO-COMPRESSOR R&D WITH CFTURBO DESIGN AND FINE/TURBO CFD)

  • 김진권
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.129-130
    • /
    • 2010
  • Design of turbo-compressors has been considered to be a high-tech which only a few early industrialized countries could do efficiently since it requires not only deep understanding of high level gas dynamics and complex fluid dynamics but also accumulation of experiences in the feedback of expensive manufacturing and difficult testing to the design theory and empirical design coefficients. CFturbo is the turbomachinery design software which incorporates traditional well formulated German design technology and latest software technology of 3-dimensional graphics. Fine/Turbo is a powerful tubomachinery-oriented CFD package with quality structured grid topology templates for almost all the tubomachinery configurations for easy, fast and accurate CFD analysis. Rapid and effcient process off turbo-compressor R&D is setup with the combination of CFturbo and Fine/Turbo.

  • PDF

A 3D CFD analysis of flow past a hipped roof with comparison to industrial building standards

  • Khalil, Khalid;Khan, Huzafa;Chahar, Divyansh;Townsend, Jamie F.;Rana, Zeeshan A.
    • Wind and Structures
    • /
    • 제34권6호
    • /
    • pp.483-497
    • /
    • 2022
  • Three-dimensional (3D) computational fluid dynamics (CFD) analysis of flow around a hipped-roof building representative of UK inland conditions are conducted. Unsteady simulations are performed using three variations of the k-ϵ RANS turbulence model namely, the Standard, Realizable, and RNG models, and their predictive capability is measured against current European building standards. External pressure coefficients and wind loading are found through the BS 6399-2:1997 standard (obsolete) and the current European standards (BS EN 1991-1-4:2005 and A1:20101). The current European standard provides a more conservative wind loading estimate compared to its predecessor and the k-ϵ RNG model falls within 15% of the value predicted by the current standard. Surface shear stream-traces and Q-criterion were used to analyze the flow physics for each model. The RNG model predicts immediate flow separation leading to the creation of vortical structures on the hipped-roof along with a larger separation region. It is observed that the Realizable model predicts the side vortex to be a result of both the horseshoe vortex and the flow deflected off it. These model-specific aerodynamic features present the most disparity between building standards at leeward roof locations. Finally, pedestrian comfort and safety criteria are studied where the k-ϵ Standard model predicts the most ideal pedestrian conditions and the Realizable model yields the most conservative levels.

2차원 CFD를 활용한 시멘트 페이스트의 슬럼프 유동 모사 (Numerical Analysis on Flow of Cement Paste using 2D-CFD)

  • 윤태영
    • 한국도로학회논문집
    • /
    • 제19권4호
    • /
    • pp.19-25
    • /
    • 2017
  • PURPOSES : In this paper, the flow of construction material was simulated using computational fluid dynamics in a 2D axisymmetric condition to evaluate the effect of initial or varying material properties on the final shape of a specimen. METHODS : The CFD model was verified by using a well-known analytical solution for a given test condition followed by performing a sensitivity analysis to evaluate the effect of material properties on the final shape of material. Varying dynamic viscosity and yield stress were also considered. RESULTS : The CFD model in a 2D axisymmetric condition agreed with the analytical solution for most yield stress conditions. Minor disagreements observed at high yield stress conditions indicate improper application of the pure shear assumption for the given material behavior. It was also observed that the variation of yield stress and dynamic viscosity during curing had a meaningful effect on the final shape of the specimen. CONCLUSIONS : It is concluded that CFD modeling in a 2D axisymmetric condition is good enough to evaluate fluidal characteristics of material. The model is able to consider varying yield stress and viscosity during curing. The 3D CFD-DEM coupled model may be required to consider the interaction of aggregates in fluid.

NUFLEX의 상변화, 분무유동 및 MHD 해석 (NUMERICAL ANALYSIS OF PHASE CHANGE AND SPRAY, MHD FLOW USING A NUFLEX)

  • 노경철;유홍선;강관구;허남건
    • 한국전산유체공학회지
    • /
    • 제12권2호
    • /
    • pp.32-36
    • /
    • 2007
  • NUFLEX is a general purpose program for the analysis 3D thermo/fluid flow and pre/post processor in a complex geometry. NUFLEX is composed of various physical models, such as phase change(solidification/melting) and spray, MHD(Magneto Hydraulic Dynamics) models. It is possible to simulate continuous cast iron process and spray droplet breakup/collision phenomenon. For the verification of these models, compared with the experimental data and commercial CFD code's results. The results show good agreements with experimental and comercial CFD codes's results.

전산유체역학(CFD)를 활용한 정수공정에서 압력수 확산공정 진단 (Evaluation of Pressurized Water Diffusion in Water Treatment Process Using CFD)

  • 조영만;유수전;노재순;빈재훈;최광주;이광욱;이기봉;이정규
    • 대한환경공학회지
    • /
    • 제33권5호
    • /
    • pp.359-367
    • /
    • 2011
  • 압력수 확산공정은 정수공정에서 응집제나 염소용해수를 고압의 압력수로 분사하여 혼합하는 공정이다. 본 연구의 목적은 압력수 확산공정에 대한 전산유체역학적(Computational Fluid Dynamics) 진단을 통해 투입한 약품의 완전 혼합거리 및 혼합 거리를 줄이기 위한 확산판의 크기와 설치거리를 도출하는 것이다. 진단결과 2,200 mm 대형관에 $5kg/cm^2$ 압력수를 50mm, 100 mm 분사관으로 분사할 경우 혼합이 완료되는 혼합거리는 4D였다. 혼합거리를 줄이기 위해 분사관 전방에 확산판을 설치할 경우 분사관이 50 mm일 때 0.1D 직경의 확산판을 분사관 전방 0.2D 거리에 설치하면 혼합거리를 3D로 줄일 수있다. 그러나 분사관이 100 mm인 경우는 확산판의 크기와 설치 거리와는 상관없이 확산판이 없는 4D보다 확산거리를 줄일 수 없는 것으로 진단되었다. 따라서 2,200 mm 관에 압력수를 분사하는 경우는 50 mm 분사관을 설치하는 것이 100 mm보다 훨씬 효율적인 것으로 나타났다.

웹 기반 CFD s/w용 GUI 프로세서의 구현 (IMPLEMENTATION OF FULL WEB-BASED GRAPHIC USER INTERFACE PROCESSOR FOR CFD SOFTWARE)

  • 막슈다 쥬래바;에브게니 이바너프;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.121-125
    • /
    • 2004
  • The preprocessor - solver - postprocessor software for 2D/Axisymmetric CSCM Upwind Flux Difference Splitting Navier-Stokes code has been developed for undergraduate educational purpose. This computational fluid dynamics (CFD) software allows students to setup, solve, visualize and control dynamically server for their own fluid problems via Internet. The preprocessor Is capable of generating geometry and grid, initial solution data and required solver control parameters. The postprocessor shows vector plot and contour plot with different options while residual plot shows root-mean-square (RMS) error history graphically and retrieves the data from solver interactively. Special feature of the preprocessor is grid generation part which is based on MFC/Visual C++ application and FORTRAN single block grid generator process. Many users can access solver via Internet from client computers and solve desired problems using locally installed pre- and postprocessor and remote powerful solver part.

  • PDF

TPMS 단위체 설계에 따른 공기의 자가 순환 특성 변화 고찰 (A Study on Influence of Design of Unit Cell for TPMS on Self-circulation Characteristics of Air)

  • 범종찬;이광규;안동규
    • 소성∙가공
    • /
    • 제33권4호
    • /
    • pp.241-247
    • /
    • 2024
  • The triply periodic minimum surface (TPMS) shape with a complex geometry can easily manufactured from additive manufacturing processes. The TPMS shape has a high surface-to-volume ratio. In addition, the TPMS shape increases the possibility of the self-circulation when the fluid flows inside the TPMS structure. Due to these reason, the performance of the fluid flow filter can be greatly improved when the TPMS structure is applied to the filter. The aim of this paper is to investigate the influence of the design of the unit cell for TPMS on self-circulation characteristics of air using computational fluid dynamics (CFD). From the results of the CFD, the effects of the shape and the dimension of the unit cell for TPMS on the self-circulation pattern and the pressure difference are examined. Finally, a proper design of the TPMS is discussed from the viewpoint of self-circulation of air.

CFD에로의 Fuzzy 추론 응용에 관한 연구 - 반복계산을 위한 퍼지제어의 유효성 - (Fuzzy Reasoning on Computational Fluid Dynamics - Feasibility of Fuzzy Control for Iterative Method -)

  • 이연원;정용옥;박외철;이도형;배대석
    • 동력기계공학회지
    • /
    • 제2권3호
    • /
    • pp.21-26
    • /
    • 1998
  • Numerical simulations for various fluid flows require enormous computing time during iterations. In order to solve this problem, several techniques have been proposed. A SOR method is one of the effective methods for solving elliptic equations. However, it is very difficult to find the optimum relaxation factor, the value of this factor for practical problems used to be estimated on the basis of expertise. In this paper, the implication of the relaxation factor are translated into fuzzy control rules on the basis of the expertise of numerical analysers, and fuzzy controller incorporated into a numerical algorithm. From two cases of study, Poisson equation and cavity flow problem, we confirmed the possibility of computational acceleration with fuzzy logic and qualitative reasoning in numerical simulations. Numerical experiments with the fuzzy controller resulted in generating a good performance.

  • PDF