• Title/Summary/Keyword: computational fluid dDynamics (CFD)

Search Result 365, Processing Time 0.031 seconds

Measurement and Prediction of Spray Targeting Points according to Injector Parameter and Injection Condition (인젝터 설계변수 및 분사조건에 따른 분무타겟팅 지점의 측정 및 예측)

  • Mengzhao Chang;Bo Zhou;Suhan Park
    • Journal of ILASS-Korea
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • In the cylinder of gasoline direct injection engines, the spray targeting from injectors is of great significance for fuel consumption and pollutant emissions. The automotive industry is putting a lot of effort into improving injector targeting accuracy. To improve the targeting accuracy of injectors, it is necessary to develop models that can predict the spray targeting positions. When developing spray targeting models, the most used technique is computational fluid dynamics (CFD). Recently, due to the superiority of machine learning in prediction accuracy, the application of machine learning in this field is also receiving constant attention. The purpose of this study is to build a machine learning model that can accurately predict spray targeting based on the design parameters of injectors. To achieve this goal, this study firstly used laser sheet beam visualization equipment to obtain many spray cross-sectional images of injectors with different parameters at different injection pressures and measurement planes. The spray images were processed by MATLAB code to get the targeting coordinates of sprays. A total of four models were used for the prediction of spray targeting coordinates, namely ANN, LSTM, Conv1D and Conv1D & LSTM. Features fed into the machine learning model include injector design parameters, injection conditions, and measurement planes. Labels to be output from the model are spray targeting coordinates. In addition, the spray data of 7 injectors were used for model training, and the spray data of the remaining one injector were used for model performance verification. Finally, the prediction performance of the model was evaluated by R2 and RMSE. It is found that the Conv1D&LSTM model has the highest accuracy in predicting the spray targeting coordinates, which can reach 98%. In addition, the prediction bias of the model becomes larger as the distance from the injector tip increases.

Numerical Study on Roughness Effect for Axi-symmetry Submerged Body in High Reynolds Number (고 레이놀즈 수에서의 축대칭 몰수체의 거칠기에 대한 수치연구)

  • Joung, Tae-Hwan;Song, Hyung-Do;Yum, Jong-Gil;Song, Seongjin;Park, Sunho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.246-252
    • /
    • 2018
  • In this paper, the friction drag force of 3D submerged body is investigated by considering the surface roughness, the first grid height, and the Reynolds number using open CFD source code, OpenFOAM 4.0. A procedure for estimating drag components by CFD code is set up and suggested in this study. In the 3D submerged body, because of the form factor in the 3D computations, the friction resistance with the small roughness of $12{\mu}m$ obtains different result with the smooth wall. As the Reynolds number increased, the boundary layer becomes thinner and the fiction resistance tends to decrease. In the computations for the effect of y+, the friction resistance and wall shear stress are excessively predicted when the y+ value deviates from the log layer. This is presumably because the boundary layer becomes thicker and the turbulence energy is excessively predicted in the nose due to the increase in y+ value. As the roughness increases, the boundary layer becomes thicker and the turbulence kinetic energy on the surface increases. From this study, the drag estimation method, considering the roughness by numerical analysis for ships or offshore structures, can be provided by using the suggested the y+ value and surface roughness with wall function.

A Study on the Hood Performance Improvement of Pickling Tank using CFD (전산유체역학을 이용한 산세조 후드 성능 개선에 관한 연구)

  • Jung, Yu-Jin;Park, Ki-Woo;Shon, Byung-Hyun;Jung, Jong-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.593-601
    • /
    • 2014
  • In this study, we investigated the methods of improving the capturing ability of acid fume by assessing the performance of slot-type external hood installed on both sides of an open surface tank for acid washing process. A field survey and the results of computational fluid dynamics revealed that capturing performance of existing hoods is very poor. To solve such problem, 'push-pull hood' that pushes from one side of an open surface tank and pulls on the other side was suggested. The initial prediction was that if a push-pull hood is used, the acid fume of an acid-washing tank surface could be moved towards the hood through the push flow. However, this study has confirmed that if the push flow velocity becomes too high, it could spread to other areas due to flooding from the hood. Therefore, if the push air supply is maintained at around 25 $m^3/min$(push 10 m/s), proper control flow is formed on the surface of a tank and acid fume that stayed at the upper part of the tank is smoothly captured toward the hood, significantly enhancing the capturing performance.

A Study on Velocity Distribution Characteristics for Each Location and Effectiveness of Straight Duct Length in a Square-sectional 180° Bended Duct (정사각형 단면을 갖는 180° 곡관에서 위치별 속도분포특성 및 직관거리의 유효성에 관한 연구)

  • Chen, Jing-Jing;Yoon, Jun-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.618-627
    • /
    • 2016
  • This study numerically analyzes the characteristics of the velocity distribution for each location of a square-sectional $180^{\circ}$ bent duct using a Reynolds Stress Turbulent model. The flow parameters were varied, including the working fluids, inlet velocity, surface roughness, radius of curvature, and hydraulic diameter. The boundary conditions for computational fluid dynamics analysis were inlet temperatures of air and water of 288 K and 293 K, inlet air velocity of 3-15 m/s, inner surface roughness of 0-0.001 mm, radius of curvature of 2.5-4.5 D, and hydraulic diameter of 70-100 mm. The working fluid characteristics were highly affected by changes in the viscous force. The maximum velocity profiles in the bent duct were indicated when the $90^{\circ}$ section was in the region of X/D=0.8 and the $180^{\circ}$ section was in the region of Y/D=0.8. Lower surface roughness and higher radius of curvature resulted in a higher rate of velocity change. Also, an efficient measuring location downstream of the bent duct is suggested since the flow deviations were the most stable when the straight duct length was in the region of L/D=30. The minimum deviations at the same velocity conditions according to the hydraulic diameter were mostly indicated in the range of L/D=15-30 based on the standard deviation characteristics.

Evaluation of Flow Characteristics in Water Supply Pipes Shielding Electromagnetic Pulse of 100 dB with Concentric and Eccentric Reducers (Concentric Reducer와 Eccentric Reducer를 사용한 EMP 차폐 100dB급 급수관의 유동특성 평가)

  • Pang, Seung-Ki;Ahn, Hye-Rin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • In this paper, the flow characteristics of water in the water supply pipes of a WBC array were evaluated. We simulated the flow velocities and pressures for a standard pipe, an expansion pipe with a concentric reducer, and an expansion pipe with an eccentric reducer using computational fluid dynamics. In the case of the standard pipe, when the inlet flow velocities were 0.5 m/s and 2.0 m/s, the maximum flow velocities at the center of the WBC array were 0.54 m/s and 2.74 m/s, respectively, which were the greatest values among those of all the pipe models considered. In the case of the expansion pipe, the maximum flow velocities at the center of the WBC array were almost the same under the same conditions regardless of the type of reducer. The pressure losses in the pipe due to the concentric and eccentric reducers were found to be (165.09 ${\times}$ inlet $velocity^{1.6677}$) and (210.98 ${\times}$ inlet $velocity^{1.6478}$), respectively. The coefficient of determination at this time was greater than 0.99 and was the same for both the models. As a simulation result, it was found that in order to reduce the pressure loss when pipe with WBC array is connected with a conventional pipe, diameter of the pipe with WBC array at that section should be enlarged by one step, and then connected to the conventional pipe with a concentric reducer.

Effect of Absorbent Thickness on the Noise Level Reduction of Fire-Extinguishing Nozzle (흡음재 두께가 소화노즐 소음도 저감에 미치는 영향)

  • Kim, Hak-Sun;Hwang, In-Ju;Kim, Youn-Jea
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.99-104
    • /
    • 2019
  • In a gas system fire extinguishing system, extinguishing agents are usually stored with approximately 280 bar at $21^{\circ}C$ and are released at approximately 8 MPa through the decompression valve and orifice to quickly suppress the fire. When extinguishing agents are discharged, they cause a loud noise (approximately 140 dB), which can damage electronics, such as hard disk drives (HDDs). Therefore, the noise is becoming a serious issue in the gas extinguishing system. The method of the noise reduction by adding an absorbent is most general and in this study, the thickness of the absorbent was as a selected design variable. The noise level at the observation point and the flow characteristics inside the nozzle were numerically calculated and analyzed using the commercial code ANSYS CFX ver. 18.1.

Development of Device Measuring Real-time Air Flow in Greenhouse (온실 공기유동 계측 시스템 개발)

  • Noh, Jae Seung;Kwon, Jinkyoung;Kim, Yu Yong
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.20-26
    • /
    • 2018
  • This study was conducted to develop a device for measuring the air flow by space variation through monitoring program, which acquires data by each point from each environmental sensor located in the greenhouse. The distribution of environmental factors(air temperature, humidity, wind speed, etc.) in the greenhouse is arranged at 12 points according to the spatial variation and a large number of measurement points (36 points in total) on the X, Y and Z axes were selected. Considering data loss and various greenhouse conditions, a bit rate was at 125kbit/s at low speed, so that the number of sensors can be expanded to 90 within greenhouse with dimensions of 100m by 100m. Those system programmed using MATLAB and LabVIEW was conducted to measure distributions of the air flow along the greenhouse in real time. It was also visualized interpolated the spatial distribution in the greenhouse. In order to verify the accuracy of CFD modeling and to improve the accuracy, it will compare the environmental variation such as air temperature, humidity, wind speed and $CO_2$ concentration in the greenhouse.

Anthracite Oxygen Combustion Simulation in 0.1MWth Circulating Fluidized Bed (0.1 MWth 급 순환유동층에서의 무연탄 연소 전산유체역학 모사)

  • Go, Eun Sol;Kook, Jin Woo;Seo, Kwang Won;Seo, Su Been;Kim, Hyung Woo;Kang, Seo Yeong;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.417-428
    • /
    • 2021
  • The combustion characteristics of anthracite, which follow a complex process with low reactivity, must be considered through the dynamic behavior of circulating fluidized bed (CFB) boilers. In this study, computational fluid dynamics (CFD) simulation was performed to analyze the combustion characteristics of anthracite in a pilot scale 0.1 MWth Oxy-fuel circulating fluidized bed (Oxy-CFB) boiler. The 0.1MWth Oxy-CFB boiler is composed of combustor (0.15 m l.D., 10 m High), cyclone, return leg, and so on. To perform CFD analysis, a 3D simulation model reactor was designed and used. The anthracite used in the experiment has an average particle size of 1,070 ㎛ and a density of 2,326 kg/m3. The flow pattern of gas-solids inside the reactor according to the change of combustion environment from air combustion to oxygen combustion was investigated. At this time, it was found that the temperature distribution in air combustion and oxygen combustion showed a similar pattern, but the pressure distribution was lower in oxygen combustion. addition, since it has a higher CO2 concentration in oxygen combustion than in air combustion, it can be expected that carbon dioxide capture will take place actively. As a result, it was confirmed that this study can contribute to the optimized design and operation of a circulating fluidized bed reactor using anthracite.

Analysis of the Climate inside Multi-span Plastic Greenhouses under Different Shade Strategies and Wind Regimes

  • He, Keshi;Chen, Dayue;Sun, Lijuan;Huang, Zhenyu;Liu, Zhenglu
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.473-483
    • /
    • 2014
  • In this work, the effects of shade combination, shade height and wind regime on greenhouse climate were quantified. A two-dimensional (2-D) computational fluid dynamics (CFD) model was developed based on an 11-span plastic greenhouse in eastern China for wind almost normal to the greenhouse orientation. The model was first validated with air temperature profiles measured in a compartmentalized greenhouse cultivated with mature lettuce (Lactuca sativa L., 'Yang Shan'). Next, the model was employed to investigate the effect of shade combinations on greenhouse microclimate patterns. Simulations showed similar airflow patterns in the greenhouse under different shade combinations. The temperature pattern was a consequence of convection and radiation transfer and was not significantly influenced by shade combination. The use of shade screens reduced air velocity by $0.02-0.20m{\cdot}s^{-1}$, lowered air temperature by $0.2-0.8^{\circ}C$ and raised the humidity level by 0.9-2.0% in the greenhouse. Moreover, it improved the interior climate homogeneity. The assessment of shade performance revealed that the external shade had good cooling and homogeneity performance and thus can be recommended. Furthermore, the effects of external shade height and wind regime on greenhouse climate parameters showed that external shade screens are suitable for installation within 1 m above roof level. They also demonstrated that, under external shade conditions, greenhouse temperature was reduced relative to unshaded conditions by $1.3^{\circ}C$ under a wind speed of $0.5m{\cdot}s^{-1}$, whereas it was reduced by merely $0.5^{\circ}C$ under a wind speed of $2.0m{\cdot}s^{-1}$. Therefore, external shading is more useful during periods of low wind speed.

Design Optimization of a 500W Fuel Cell Stack Weight for Small Robot Applications (소형로봇용 500W급 연료전지 스택무게 최적화 설계)

  • Hwang, S.W.;Choi, G.H.;Park, Sam.;Ench, R. Michael;Bates, Alex M.;Lee, S.C.;Kwon, O.S.;Lee, D.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.275-281
    • /
    • 2012
  • Proton Exchange Membrane Fuel Cells (PEMFC) are the most appropriate for energy source of small robot applications. PEMFC has superior in power density and thermodynamic efficiency as compared with the Direct Methaol Fuel Cell (DMFC). Furthermore, PEMFC has lighter weight and smaller size than DMFC which are very important factors as small robot power system. The most significant factor of mobile robots is weight which relates closely with energy consumption and robot operation. This research tried to find optimum specifications in terms of type, number of cell, active area, cooling method, weight, and size. In order to find optimum 500W PEMFC, six options are designed in this paper and studied to reduce total stack weight by applying new materials and design innovations. However, still remaining problems are thermal management, robot space for energy sources, and soon. For a thermal management, design options need to analysis of Computational Fluid Dynamics (CFD) for determining which option has the improved performance and durability.