• 제목/요약/키워드: computational accuracy

검색결과 2,139건 처리시간 0.026초

서브 그리딩 유한 차분 시간 영역법을 이용한 계단형 임피던스 저역 통과 필터 해석 (Analysis of the Stepped-Impedance Low Pass Filter using Sub-Gridding Finite-Difference Time-Domain Method)

  • 노범석;최재훈;이상선;정제명
    • 한국전자파학회논문지
    • /
    • 제13권2호
    • /
    • pp.217-224
    • /
    • 2002
  • FDTD 해석법에서 공간적 셀의 크기는 해석의 정확도를 결정하는 중요한 요소이다. 하지만 정확도를 향상시키기 위하여 진의 크기를 줄이게 되면, 해석시간과 기억용량의 증가를 초래하게 되는데 서브 그리딩을 사용하여 이를 해결할 수 있다. 본 논문에서는 관심영역만 세밀하게 해석할 수 있는 3차원 서브 그리딩법을 기술하고 이를 응용하여 몇 가지의 구조를 해석하였다. 제안한 방범의 타당성을 화인하기 위하여 균일 그리딩과 서브 그리딩을 적용하여 특성을 해석하고 그 격과를 비교하였다. 제안한 방법을 사용하였을 경우 동일한 정확도에서 균일 그리딩에 비하여 6배의 해석시간의 줄었고 기억용량은 2.5배 정도 줄어들었다.

Neutronic Benchmark 문제에 대한 B$\Phi$rrensen 모델응용 (B$\Phi$rrensen Model Computation for Neutronic Benchmark Problems)

  • Bub Dong Chung;Chang Hyo Kim;Chang Hyun Chung
    • Nuclear Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.73-84
    • /
    • 1981
  • B$\Phi$rrensen은 3차원적 노심분석에 긴 시간이 요구되는 유한차분법의 대안으로서 경수형 원자로의 전체출력분포를 계산하는데 한가지의 coarse mesh 방법을 제안하였다. 이 방법은 계산시간이 매우 짧은 것으로 알려져 있지만. 그 계산의 정확도에 대한 것은 아직까지 알려져 있지 않다. 본 논문에서는 B$\Phi$rrensen의 방법을 IAEA benchmark 문제와 RIS$\Phi$ benchmark 문제에 적용시켜서 계산시간과 정확도에 대해서 고찰하였다. 두 문제에서 노심-반사체와의 경계조건과 B$\Phi$rrensen의 모델상수들의 개선으로 출력분포 계산의 정확도를 상당히 높힐 수 있었다.

  • PDF

항적자료를 활용한 항공기 연료 소모량 추정 및 정확도 분석 (Estimation of Flight Fuel Consumption Based on Flight Track Data and Its Accuracy Analysis)

  • 박장훈;구성관;백호종
    • 한국항공운항학회지
    • /
    • 제22권4호
    • /
    • pp.25-33
    • /
    • 2014
  • As global warming becoming an environmentally serious issue, more attention is drawn to fuel consumption which is the direct source of green house gas emission. The fuel consumption by aircraft operation is not an exception. Motivated by the societal and environmental context, this paper explains a method for estimation of aircraft fuel consumed during their flights as well as the computational process using real flight track data. Applying so-called 'Total Energy Model' along with aircraft specific parameters provided in EUROCONTROL's Base of Aircraft Data (BADA) to aircraft radar track data, we estimate fuel consumption of individual aircraft flown between Gimpo and Jeju airports. We then assess the estimation accuracy by comparing the estimated fuel consumption with the actual one collected from an airline. The computational results are quite encouraging in that the method is able to estimate the actual fuel consumption within ${\pm}6{\sim}11%$ of error margin. The limitations and possible enhancements of the method are also discussed.

Investigation of elasto-plastic seismic response analysis method for complex steel bridges

  • Tang, Zhanzhan;Xie, Xu;Wang, Yan;Wang, Junzhe
    • Earthquakes and Structures
    • /
    • 제7권3호
    • /
    • pp.333-347
    • /
    • 2014
  • Multi-scale model can take both computational efficiency and accuracy into consideration when it is used to conduct elasto-plastic seismic response analysis for complex steel bridges. This paper proposed a method based on pushover analysis of member sharing the same section pattern to verify the accuracy of multi-scale model. A deck-through type steel arch bridge with a span length of 200m was employed for seismic response analysis using multi-scale model and fiber model respectively, the validity and necessity of elasto-plastic seismic analysis for steel bridge by multi-scale model was then verified. The results show that the convergence of load-displacement curves obtained from pushover analysis for members having the same section pattern can be used as a proof of the accuracy of multi-scale model. It is noted that the computational precision of multi-scale model can be guaranteed when length of shell element segment is 1.40 times longer than the width of section where was in compression status. Fiber model can only be used for the predictions of the global deformations and the approximate positions of plastic areas on steel structures. However, it cannot give exact prediction on the distribution of plastic areas and the degree of the plasticity.

Computational Investigation of Seakeeping Performance of a Surfaced Submarine in Regular Waves

  • Jung, Doojin;Kim, Sanghyun
    • 한국해양공학회지
    • /
    • 제36권5호
    • /
    • pp.303-312
    • /
    • 2022
  • A submarine is optimized to operate below the water surface because it spends most of its time in a submerged condition. However, the performance in free surface conditions is also important because it is unavoidable for port departure and arrival. Generally, potential flow theory is used for seakeeping analysis of a surface ship and is known for excellent numerical accuracy. In the case of a submarine, the accuracy of potential theory is high underwater but is low in free surface conditions because of the nonlinearity near the free surface area. In this study, the seakeeping performance of a Canadian Victoria Class submarine in regular waves was investigated to improve the numerical accuracy in free surface conditions by using computational fluid dynamics (CFD). The results were compared to those of model tests. In addition, the potential theory software Hydrostar developed by Bureau Veritas was also used for seakeeping performance to compare with CFD results. From the calculation results, it was found that the seakeeping analysis by using CFD gives good results compared with those of potential theory. In conclusion, seakeeping analysis based on CFD can be a good solution for estimating the seakeeping performance of submarines in free surface conditions.

Choice of Efficient Sampling Rate for GNSS Signal Generation Simulators

  • Jinseon Son;Young-Jin Song;Subin Lee;Jong-Hoon Won
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권3호
    • /
    • pp.237-244
    • /
    • 2023
  • A signal generation simulator is an economical and useful solution in Global Navigation Satellite System (GNSS) receiver design and testing. A software-defined radio approach is widely used both in receivers and simulators, and its flexible structure to adopt to new signals is ideally suited to the testing of a receiver and signal processing algorithm in the signal design phase of a new satellite-based navigation system before the deployment of satellites in space. The generation of highly accurate delayed sampled codes is essential for generating signals in the simulator, where its sampling rate should be chosen to satisfy constraints such as Nyquist criteria and integer and non-commensurate properties in order not to cause any distortion of original signals. A high sampling rate increases the accuracy of code delay, but decreases the computational efficiency as well, and vice versa. Therefore, the selected sampling rate should be as low as possible while maintaining a certain level of code delay accuracy. This paper presents the lower limits of the sampling rate for GNSS signal generation simulators. In the simulation, two distinct code generation methods depending on the sampling position are evaluated in terms of accuracy versus computational efficiency to show the lower limit of the sampling rate for several GNSS signals.

Massive MIMO Channel Estimation Algorithm Based on Weighted Compressed Sensing

  • Lv, Zhiguo;Wang, Weijing
    • Journal of Information Processing Systems
    • /
    • 제17권6호
    • /
    • pp.1083-1096
    • /
    • 2021
  • Compressed sensing-based matching pursuit algorithms can estimate the sparse channel of massive multiple input multiple-output systems with short pilot sequences. Although they have the advantages of low computational complexity and low pilot overhead, their accuracy remains insufficient. Simply multiplying the weight value and the estimated channel obtained in different iterations can only improve the accuracy of channel estimation under conditions of low signal-to-noise ratio (SNR), whereas it degrades accuracy under conditions of high SNR. To address this issue, an improved weighted matching pursuit algorithm is proposed, which obtains a suitable weight value uop by training the channel data. The step of the weight value increasing with successive iterations is calculated according to the sparsity of the channel and uop. Adjusting the weight value adaptively over the iterations can further improve the accuracy of estimation. The results of simulations conducted to evaluate the proposed algorithm show that it exhibits improved performance in terms of accuracy compared to previous methods under conditions of both high and low SNR.

Optimization of Model based on Relu Activation Function in MLP Neural Network Model

  • Ye Rim Youn;Jinkeun Hong
    • International journal of advanced smart convergence
    • /
    • 제13권2호
    • /
    • pp.80-87
    • /
    • 2024
  • This paper focuses on improving accuracy in constrained computing settings by employing the ReLU (Rectified Linear Unit) activation function. The research conducted involves modifying parameters of the ReLU function and comparing performance in terms of accuracy and computational time. This paper specifically focuses on optimizing ReLU in the context of a Multilayer Perceptron (MLP) by determining the ideal values for features such as the dimensions of the linear layers and the learning rate (Ir). In order to optimize performance, the paper experiments with adjusting parameters like the size dimensions of linear layers and Ir values to induce the best performance outcomes. The experimental results show that using ReLU alone yielded the highest accuracy of 96.7% when the dimension sizes were 30 - 10 and the Ir value was 1. When combining ReLU with the Adam optimizer, the optimal model configuration had dimension sizes of 60 - 40 - 10, and an Ir value of 0.001, which resulted in the highest accuracy of 97.07%.