• Title/Summary/Keyword: compressive strength of aged concrete

Search Result 41, Processing Time 0.021 seconds

Numerical prediction of stress and displacement of ageing concrete dam due to alkali-aggregate and thermal chemical reaction

  • Azizan, Nik Zainab Nik;Mandal, Angshuman;Majid, Taksiah A.;Maity, Damodar;Nazri, Fadzli Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.793-802
    • /
    • 2017
  • The damage of concrete due to the expansion of alkali-aggregate reaction (AAR) and thermal-chemical reactions affecting the strength of concrete is studied. The empirical equations for the variations of expansion of AAR, compressive strength and degradation of the modulus of elasticity with time, and compressive strength with degradation of the modulus of elasticity are proposed by analysing numerous experimental data. It is revealed that the expansion of AAR and compressive strength increase with time. The proposed combination of the time variations of chemical and mechanical parameters provides a satisfactory prediction of the concrete strength. Seismic analysis of the aged Koyna dam is conceded for two different long-term experimental data of concrete incorporating the proposed AAR based properties. The responses of aged Koyna dam reveal that the crest displacement of the Koyna dam significantly increases with time while the contour plots show that major principal stress at neck level reduces with time. As the modulus of elasticity decreases with ages the stress generated in the concrete structure get reduces. On the other hand with lesser value of modulus of elasticity the structure becomes more flexible and the crest displacement becomes very high that cause the seismic safety of the dam reduce.

Prediction of compressive strength of concrete using multiple regression model

  • Chore, H.S.;Shelke, N.L.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.837-851
    • /
    • 2013
  • In construction industry, strength is a primary criterion in selecting a concrete for a particular application. The concrete used for construction gains strength over a long period of time after pouring the concrete. The characteristic strength of concrete is defined as the compressive strength of a sample that has been aged for 28 days. Neither waiting for 28 days for such a test would serve the rapidity of construction, nor would neglecting it serve the quality control process on concrete in large construction sites. Therefore, rapid and reliable prediction of the strength of concrete would be of great significance. On this backdrop, the method is proposed to establish a predictive relationship between properties and proportions of ingredients of concrete, compaction factor, weight of concrete cubes and strength of concrete whereby the strength of concrete can be predicted at early age. Multiple regression analysis was carried out for predicting the compressive strength of concrete containing Portland Pozolana cement using statistical analysis for the concrete data obtained from the experimental work done in this study. The multiple linear regression models yielded fairly good correlation coefficient for the prediction of compressive strength for 7, 28 and 40 days curing. The results indicate that the proposed regression models are effectively capable of evaluating the compressive strength of the concrete containing Portaland Pozolana Cement. The derived formulas are very simple, straightforward and provide an effective analysis tool accessible to practicing engineers.

Correlation between Longitudinal Wave Velocity and Strength of Early-aged Concrete (초기 재령 콘크리트의 종파 속도와 강도의 상관관계)

  • 이휘근;이광명;김동수
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.67-74
    • /
    • 2000
  • The usage of nondestructive testing on early-aged concrete leads to enhacned safty and allows effective scheduling of construction, thus making it possible to maximize the time and cost efficiencies. In this study, a reliable nondestructive strength evaluation method for early-aged concrete using the longitudinal wave velocity is proposed. Compression tests were performed to examine factors influencing the velocity-strength relationship of concrete, such as water-cement (w/c) ratio, fine aggregate ratio, curing temperature, and curing condition. The test results show that a change in the w/c ratio and curing temperature has minor effect on the velocity-strength relationship/ However, curing condition significantly influences the velocity-strength relationship of early-aged concrete. Moreover, the longitudinal wave velocity increases with decreasing fine aggregate ratio. It is concluded from this study that the strength evaluation of early-age concrete can be achieved by a nonlinear equation which considers the effects of curing condition and fine aggregate ratio.

Modeling on Compressive Strength in High Performance Concrete Using Porosity (공극률을 이용한 고성능 콘크리트의 압축강도 특성 모델링)

  • Lee, Hack Soo;Kwon, Seung Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.124-133
    • /
    • 2012
  • Compressive strength in concrete increases with time. Regression analysis with time is conventionally performed for strength evaluation and prediction. In this study, hydrate amount is assumed as a function of hydration rate and porosity, and modeling on compressive strength is carried out considering decreasing porosity with time, which does not need the regression analysis with time. For twenty one mix proportions of HPC (High Performance Concrete), DUCOM (FE program) which can simulate the behavior in early aged concrete is utilized, and porosity from each mix proportions is obtained with time. For HPC with OPC (Ordinary Portland Cement) concrete, modeling on compressive strength is performed considering hydration rate, unit content of cement, and porosity with time. For HPC with mineral admixtures, a long-term parameter which can handle long-term strength development is additionally considered. From the comparison with the previous test results, the applicability of the proposed model is verified.

Study of thin film transition liquid crystal display (TFT-LCD) optical waste glass applied in early-high-strength controlled low strength materials

  • Wang, Her-Yung;Chen, Jyun-Sheng
    • Computers and Concrete
    • /
    • v.5 no.5
    • /
    • pp.491-501
    • /
    • 2008
  • The present study verifies compressive strength, ultrasonic pulse velocity, electrical resistance,permeable ratio, and shrinkage from waste glass controlled low strength materials (WGCLSM) and early-high-strength WGCSLM specimens, by replacing the sand with waste glass percentages of 0%, 10%,20%, and 30%. This study reveals that increasing amounts of waste LCD glass incorporated into concrete increases WGCLSM fluidity and reduces the setting time, resulting in good working properties. By increasing the glass to sand replacement ratio, the compressive strength decreases to achieve low-strength effects. Furthermore, the electrical resistance also rises as a result of increasing the glass to sand replacement ratio. Early-high-strength WGCSLM aged 28 days has twice the electrical resistance compared to general WGCSLM. Early-high-strength WGCSLM aged 7 days has a higher ultrasonic pulse velocity similar to WGCSLM aged 28 days. The variation of length with age of different compositions is all within the tolerance range of 0.025%. This study demonstrates that the proper composition ratio of waste LCD glass to sand in early-high-strength WGCSLM can be determined by using different amounts of glass-sand. A mechanism for LCD optical waste glass usage can be established to achieve industrial waste minimization, resource recycling, and economic security.

Evaluation on the Prediction Model for the Compressive Strength of Concrete mixing Blast Furnace Slag Powder at early-aged by Maturity Method (적산온도에 의한 고로슬래그 미분말 혼입 콘크리트의 초기재령 압축강도의 예측 모델식 적용성 평가)

  • Yang, Hyun-Min;Park, Won-Jun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.251-252
    • /
    • 2012
  • The exiting studies on the strength prediction by maturity method is mainly focused on concrete using OPC, meanwhile the study on the concrete mixing blast furnace slag powder (BFSP) is insufficient. The purpose of this study is to investigate the relationships between compressive strength and equivalent age by existing Maturity functions, i.e., Nurse-saul function Arrhenius function. This study also compared and examined the strength prediction of concrete mixing BGSP using ACI model and Logistic Curve prediction equation. Therefore, it is intended that fundamental data are presented for quality management and process management of concrete mixing BFSP.

  • PDF

Image based Concrete Compressive Strength Prediction Model using Deep Convolution Neural Network (심층 컨볼루션 신경망을 활용한 영상 기반 콘크리트 압축강도 예측 모델)

  • Jang, Youjin;Ahn, Yong Han;Yoo, Jane;Kim, Ha Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.4
    • /
    • pp.43-51
    • /
    • 2018
  • As the inventory of aged apartments is expected to increase explosively, the importance of maintenance to improve the durability of concrete facilities is increasing. Concrete compressive strength is a representative index of durability of concrete facilities, and is an important item in the precision safety diagnosis for facility maintenance. However, existing methods for measuring the concrete compressive strength and determining the maintenance of concrete facilities have limitations such as facility safety problem, high cost problem, and low reliability problem. In this study, we proposed a model that can predict the concrete compressive strength through images by using deep convolution neural network technique. Learning, validation and testing were conducted by applying the concrete compressive strength dataset constructed through the concrete specimen which is produced in the laboratory environment. As a result, it was found that the concrete compressive strength could be learned by using the images, and the validity of the proposed model was confirmed.

Compressive Strength Properties of high strength concrete considering Adiabatic temperature rise of hot weather environment (서중환경의 단열온도상승 특성을 고려한 고강도 콘크리트의 압축강도 특성)

  • Lee, Eun Kyoung;Ham, Eun-Young;Koo, Kyung-Mo;Lee, Bo-Kyeong;Miyauchi, Hiroyuki;Kim, Gyu-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.56-57
    • /
    • 2013
  • In this study, in regard to concrete considering variety of admixture content rate, we evaluated property of adiabatic temperature rise. By setting up high temperature history, we evaluated effect to compression strength property of high strength concrete by early high temperature history. As a result, early high temperature history accelerated Hydration reaction of cement and contribute early strength development but it didn't accomplish performance objective in long-term aged.

  • PDF

A Site Application of the Revealing High Early Strength Concrete (조기강도 발현형 콘크리트의 현장 적용성 연구)

  • Kim Gyu Dong;Lee Seung Hoon;Sohn Yu Shin;Kim Han Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.560-563
    • /
    • 2004
  • This study reports the site application of concrete using AE Water Reducing Agent of Early-Strength Type. According to the lab test results, we have made plans of batch plant pilot test, and we have analyzed the erly aged compressive strength and workability of the concrete. We applied the early-strength development concrete to the construction site. We accomplished the slump test in order to evaluate the workablity and air contents, we made site curing mold to evaluate the early strength of members. As a result, we judgeed the superior property of early strength development of the concrete, and thought that we can reduce the time of form stripping more $40\%$ than ordinary strength concrete. We thought that we can reduce the term of works and finally we can accomplish the economical construction.

  • PDF

An Experimental Study on the Geopolymer for Wood Wool Ceramic Board (목모 패널용 Geopolymer Binder 개발에 관한 실험적 연구)

  • Park Dong Cheol;Lee Sea Hyun;Song Tae Hyeob;Shim Jong Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.711-714
    • /
    • 2005
  • This paper focused on development of geopolymer for wood wool ceramic board. Geopolymer can substitude ordinary portland cement and its accelerator of wood wool cement board as inorganic polymer. In this study, what we would obtain geopolymer's properties such as initial setting time(KS L 5108), flow(KS L 5102) and compressive strength of 3days aged(KS L 5105), was less than 1 hour, more than $110\%$, more than 40Mpa. Geopolymer have three essential materials called filler, hardener and geopolymer liquor. So, We applied filler by quartz, hardener by blast furnace slag powder, metakaoline and fly ash, geopolymer liquor by NaOH, KOH and sodium silicate solution. As result of this experiment, what we could obtain best fitted geopolymer's properties such as initial setting time, flow and compressive strength of 3days aged, was 45min, $116\%$ and 43.6Mpa. This result can be applicable to commercial wood wool ceramic board.

  • PDF