• Title/Summary/Keyword: compressive strength after impact

Search Result 69, Processing Time 0.026 seconds

Characteristics of Elastic Wave in Fire damaged High Strength Concrete using Impact-echo Method (충격반향기법을 이용한 화해를 입은 고강도 콘크리트의 탄성파 특성)

  • Lee, Jun Cheol;Lee, Chang Joon;Kim, Wha Jung;Lee, Ji Hee
    • Fire Science and Engineering
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • In this study, the damages of high strength concrete exposed to high temperature have been evaluated by the impact echo method. Elastic wave velocity and dynamic modulus of elasticity were measured by the impact echo method, and the compressive strength and the static modulus of elasticity were measured by the compression testing method after exposure to high temperature. The results showed that elastic wave velocity has a linear correlation with the compressive strength and dynamic modulus of elasticity has a linear correlation with static modulus of elasticity. Based on results, it is concluded that the impact echo method can be effectively applied to evaluate the mechanical properties of fire damaged high strength concrete.

A Study on the Applicability of a Cumulative Rebound Angle for the Assessment of Compressive Strength of Construction Materials Nondestructively (건설재료의 비파괴 압축강도산정을 위한 누적 반발각의 적용성에 관한 연구)

  • Son, Moorak;Jang, Byungsik;Kim, Moojun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.2
    • /
    • pp.39-45
    • /
    • 2017
  • This paper is to grasp the applicability of a cumulative rebound angle measured from the rebound action generated after impacting an object for the assessment of compressive strength of construction materials nondestructively and to propose the test results. For this study, an impact device was devised and used for impacting an object by an initial rotating free falling impact and following repetitive impacts from the rebound action which eventually disappears. Five types of construction materials, which are soil cement, cement paste, wood (pine tree), and two types of rock (shale and granite), were tested and both peak rebound angle and cumulative rebound angle were measured for each material by using a high-speed camera. The measured angles were compared with the directly measured compressive strength for each material. The comparison showed that for materials such as cement and rock the cumulative rebound angle, which reflects energy dissipation, rather than the peak rebound angle is more appropriate indicator for assessing the compressive strength of a material, but for a construction material such as wood which has a high toughness the magnitude of rebound is not an indicator to assess the compressive strength of a material.

Experimental and statistical analysis of hybrid-fiber-reinforced recycled aggregate concrete

  • Tahmouresi, Behzad;Koushkbaghi, Mahdi;Monazami, Maryam;Abbasi, Mahdi Taleb;Nemati, Parisa
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.193-206
    • /
    • 2019
  • Although concrete is the most widely used construction material, its deficiency in shrinkage and low tensile resistance is undeniable. However, the aforementioned defects can be partially modified by addition of fibers. On the other hand, possibility of adding waste materials in concrete has provided a new ground for use of recycled concrete aggregates in the construction industry. In this study, a constant combination of recyclable coarse and fine concrete aggregates was used to replace the corresponding aggregates at 50% substitution percentage. Moreover, in order to investigate the effects of fibers on mechanical and durability properties of recycled aggregate concrete, the amounts of 0.5%, 1%, and 1.5% steel fibers (ST) and 0.05%, 0.1% and 0.15% polypropylene (PP) fibers by volumes were used individually and in hybrid forms. Compressive strength, tensile strength, flexural strength, ultrasonic pulse velocity (UPV), water absorption, toughness, elastic modulus and shrinkage of samples were investigated. The results of mechanical properties showed that PP fibers reduced the compressive strength while positive impact of steel fibers was evident both in single and hybrid forms. Tensile and flexural strength of samples were improved and the energy absorption of samples containing fibers increased substantially before and after crack presence. Growth in toughness especially in hybrid fiber-reinforced specimens retarded the propagation of cracks. Modulus of elasticity was decreased by the addition of PP fibers while the contrary trend was observed with the addition of steel fibers. PP fibers decreased the ultrasonic pulse velocity slightly and had undesirable effect on water absorption. However, steel fiber caused negligible decline in UPV and a small impact on water absorption. Steel fibers reduce the drying shrinkage by up to 35% when was applied solely. Using fibers also resulted in increasing the ductility of samples in failure. In addition, mechanical properties changes were also evaluated by statistical analysis of MATLAB software and smoothing spline interpolation on compressive, flexural, and indirect tensile strength. Using shell interpolation, the optimization process in areas without laboratory results led to determining optimal theoretical points in a two-parameter system including steel fibers and polypropylene.

The crack propagation of fiber-reinforced self-compacting concrete containing micro-silica and nano-silica

  • Moosa Mazloom;Amirhosein Abna;Hossein Karimpour;Mohammad Akbari-Jamkarani
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.495-511
    • /
    • 2023
  • In this research, the impact of micro-silica, nano-silica, and polypropylene fibers on the fracture energy of self-compacting concrete was thoroughly examined. Enhancing the fracture energy is very important to increase the crack propagation resistance. The study focused on evaluating the self-compacting properties of the concrete through various tests, including J-ring, V-funnel, slump flow, and T50 tests. Additionally, the mechanical properties of the concrete, such as compressive and tensile strengths, modulus of elasticity, and fracture parameters were investigated on hardened specimens after 28 days. The results demonstrated that the incorporation of micro-silica and nano-silica not only decreased the rheological aspects of self-compacting concrete but also significantly enhanced its mechanical properties, particularly the compressive strength. On the other hand, the inclusion of polypropylene fibers had a positive impact on fracture parameters, tensile strength, and flexural strength of the specimens. Utilizing the response surface method, the relationship between micro-silica, nano-silica, and fibers was established. The optimal combination for achieving the highest compressive strength was found to be 5% micro-silica, 0.75% nano-silica, and 0.1% fibers. Furthermore, for obtaining the best mixture with superior tensile strength, flexural strength, modulus of elasticity, and fracture energy, the ideal proportion was determined as 5% micro-silica, 0.75% nano-silica, and 0.15% fibers. Compared to the control mixture, the aforementioned parameters showed significant improvements of 26.3%, 30.3%, 34.3%, and 34.3%, respectively. In order to accurately model the tensile cracking of concrete, the authors used softening curves derived from an inverse algorithm proposed by them. This method allowed for a precise and detailed analysis of the concrete under tensile stress. This study explores the effects of micro-silica, nano-silica, and polypropylene fibers on self-compacting concrete and shows their influences on the fracture energy and various mechanical properties of the concrete. The results offer valuable insights for optimizing the concrete mix to achieve desired strength and performance characteristics.

Impact Properties of 2D and 3D Textile Composites (2D 및 3D 직조형 복합재료의 충격특성)

  • Byun, Joon-Hyung;Um, Moon-Kwang;Hwang, Byung-Sun;Song, Seung-Wook;Kang, Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.91-94
    • /
    • 2003
  • Laminated composites are liable to fatal damage under impact load due to the fact that they have no reinforcement in the thickness direction. To overcome the inherent weakness, three dimensional (3D) textile reinforcements have drawn much interests. In this paper, impact performance of 2D and 3D textile composites has been characterized. For 2D composites, fiber bundle size and fiber pattern have been varied. For 3D composites, orthogonal woven preforms of different density and type of through-thickness fibers have been studied. To assess the damage after the impact loading, specimens were subjected to C-scan nondestuctive inspection. Compression after impact (CAI) were also conducted in order to evaluate residual compressive strength.

  • PDF

Influence of granulated blast furnace slag as fine aggregate on properties of cement mortar

  • Patra, Rakesh Kumar;Mukharjee, Bibhuti Bhusan
    • Advances in concrete construction
    • /
    • v.6 no.6
    • /
    • pp.611-629
    • /
    • 2018
  • The objective of present study is to investigate the effect of granulated blast furnace slag (GBS) as partial substitution of natural sand on behaviour of cement mortar. For this, the methods of factorial design with water cement (w/c) ratio and incorporation percentages of GBS as replacement of natural fine aggregate i.e., GBS(%) as factors are followed. The levels of factor w/c ratio are fixed at 0.4, 0.45, and 0.5 and the levels of factor GBS(%) are kept fixed as 0%, 20%, 40%, 60%, 80% and 100%. The compressive strength (CS) of mortar after 3, 7, 14, 28, 56 and 90 days, and water absorption (WA) are chosen as responses of the study. Analysis of variance (ANOVA) of experimental results has been carried out and those are illustrated by ANOVA tables, main effect and interaction plots. The results of study depict that the selected factors have substantial influence on the strength and WA of mortar. However, the interaction of factors has no substantial impact on CS and WA of mixes.

Corrosion effects on mechanical behavior of steel fiber reinforced concrete, including fibers from recycled tires

  • Ansari, Mokhtar;Safiey, Amir
    • Computers and Concrete
    • /
    • v.26 no.4
    • /
    • pp.367-375
    • /
    • 2020
  • Today, the use of special technologies in the admixture of concrete has made tremendous progress, but the problem that has always existed in the construction of concrete members is the brittleness and lack of loading bearing after cracking, which leads to reduced strength and energy absorption. One of the best ways to fix this is to reinforce the concrete with steel fibers. Steel fibers also control cracks due to dry shrinkage, reduce structural crack width, and improve impact resistance. In this study, recycled steel fibers from worn tires have been used in the manufacture of concrete samples, the secondary benefits of which are the reduction of environmental pollution. One of the disadvantages of steel fiber reinforced concrete is the corrosion of steel fibers and their deterioration in harsh environments such as coastal areas. Corrosion caused by chlorine ions in metal fibers causes deterioration and early decommissioning of structures in corrosive environments. In this study, the effect of the dosage of steel fibers (dosages of 15, 30, and 45 kg of fibers per cubic meter of concrete) and aspect ratio of fibers (aspect ratio of 25 and 50) on compressive and flexural strength of concrete samples are investigated. In the following, the effect of fiber corrosion on the results of the mechanical properties of concrete samples is examined. The results show that the increase in fiber causes a relative increase in compressive strength, and a significant increase in flexural strength, and corrosion of steel fibers without reducing workability reduces compressive strength and flexural strength by up to 6 to 11%, respectively.

Evaluation of Impact Resistance of Steel Fiber and Organic Fiber Reinforced Concrete and Mortar

  • Kim, Gyu-Yong;Hwang, Heon-Kyu;Nam, Jeong-Soo;Kim, Hong-Seop;Park, Jong-Ho;Kim, Jeong-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.377-385
    • /
    • 2012
  • In this study, the Impact resistance of steel fiber and organic fiber reinforced concrete and mortar was evaluated and the improvement in toughness resulting from an increase in compressive strength and mixing fiber for impact resistance on performance was examined. The types of fiber were steel fiber, PP and PVA, and these were mixed in at 0.1, 0.5 and 1.0 vol.%, respectively. Impact resistance is evaluated with an apparatus for testing impact resistance performance by high-speed projectile crash by gas-pressure. For the experimental conditions, Specimen size was $100{\times}100{\times}20$, 30mm ($width{\times}height{\times}thickness$). Projectile diameter was 7 and 10 mm and impact speed is 350m/s. After impact test, destruction grade, penetration depth, spalling thickness and crater area were evaluated. Through this evaluation, it was found that as compressive strength is increased, penetration is suppressed. In addition, as the mixing ratio of fiber is increased, the spalling thickness and crater area are suppressed. Organic fibers have lower density than the steel fiber, and population number per unit area is bigger. As a result, the improvement of impact resistance is more significant thanks to dispersion and degraded attachment performance.

Utilization of PTE and LDPE Plastic Waste and Building Material Waste as Bricks

  • Intan, Syarifah Keumala;Santosa, Sandra
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.603-608
    • /
    • 2019
  • Plastic waste is becoming a problem in various countries because of the difficulty of natural decomposition. One type is PET plastic(Polyethylene Terephthalate), which is often used as a bottle for soft drink packaging, and LDPE(Low Density Polyethylene), which is also widely used as a food or beverage packaging material. The use of these two types of plastic continuously, without good recycling, will have a negative impact on the environment. Building material waste is also becoming a serious environmental problem. This study aims to provide a solution to the problem of the above plastic waste and building material waste by making them into a mixture to be used as bricks. Research is carried out by mixing both materials, namely plastic heated at a temperature of $180-220^{\circ}C$ and building material waste that had been crushed and sized to 30-40 mesh with homogeneous stirring. The ratios of PET and LDPE plastic to building material waste are 9 : 1, 8 : 2, 7 : 3, 6 : 4 and 5 : 5. After heating and printing, density, water absorption and compressive strength tests are carried out. Addition of PET and LDPE plastic can increase compressive strength, and reduce water absorption, porosity and density. A maximum compressive strength of 10.5 MPa is obtained at the ratio of 6 : 4.

Influence of ultrasonic impact treatment on microstructure and mechanical properties of nickel-based alloy overlayer on austenitic stainless steel pipe butt girth joint

  • Xilong Zhao;Kangming Ren;Xinhong Lu;Feng He;Yuekai Jiang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4072-4083
    • /
    • 2022
  • Ultrasonic impact treatment (UIT) is carried out on the Ni-based alloy stainless steel pipe gas tungsten arc welding (GTAW) girth weld, the differences of microstructure, microhardness and shear strength distribution of the joint before and after ultrasonic shock are studied by microhardness test and shear punch test. The results show that after UIT, the plastic deformation layer is formed on the outside surface of the Ni-based alloy overlayer, single-phase austenite and γ type precipitates are formed in the overlayer, and a large number of columnar crystals are formed on the bottom side of the overlayer. The average microhardness of the overlayer increased from 221 H V to 254 H V by 14.9%, the shear strength increased from 696 MPa to 882 MPa with an increase of 26.7% and the transverse average residual stress decreased from 102.71 MPa (tensile stress) to -18.33 MPa (compressive stress), the longitudinal average residual stress decreased from 114.87 MPa (tensile stress) to -84.64 MPa (compressive stress). The fracture surface has been appeared obvious shear lip marks and a few dimples. The element migrates at the fusion boundary between the Ni-based alloy overlayer and the austenitic stainless steel joint, which is leaded to form a local martensite zone and appear hot cracks. The welded joint is cooled by FA solidification mode, which is forming a large number of late and skeleton ferrite phase with an average microhardness of 190 H V and no obvious change in shear strength. The base metal is all austenitic phase with an average microhardness of 206 H V and shear strength of 696 MPa.