• Title/Summary/Keyword: compressive strength

Search Result 7,749, Processing Time 0.031 seconds

Development of A Strength Test Method for Irregular Shaped Concrete Block Paver (이형 콘크리트 블록의 강도 평가방법에 관한 연구)

  • Lin, Wuguang;Park, Dae-Geun;Ryu, SungWoo;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.11-18
    • /
    • 2014
  • PURPOSES : This study aims to develop a strength test method for irregularly shaped concrete block paver. METHODS : Ten (10) different types of concrete block pavers including porous and dense blocks were tested for strength capacities. Destructive and non-destructive methods were used to develop a strength test method for irregularly shaped concrete block paver. The flexural strength evaluation was conducted in accordance to KS F 4419, while compressive strength was conducted with a 45.7mm-diameter core specimen. The impact echo test method was used to evaluate the elastic modulus. Finally, regression analysis was used to investigate the relationship between flexural strength, compressive strength and elastic modulus based on their corresponding test results. RESULTS : The flexural strength of the tested block pavers ranged from 4MPa to 10MPa. At 95% confidence level, the coefficients of determination between compressive-flexural strength relationship and compressive strength-elastic modulus relationship were 0.94 and 0.84, respectively. These coefficients signified high correlation. CONCLUSIONS : Using the test method proposed in this study, it will be easier to evaluate the strength of irregularly shaped concrete block pavers through impact echo test and compressive test, instead of the flexural test. Relative to the flexural strength requirement of 5MPa, the minimum values of compressive strength and elastic modulus, as proposed, are 13.0MPa and 25.0GPa, respectively.

A Study on the Application of Non-Destructive Testing Equation for the Estimation of Compressive Strength of High Strength Concrete (고강도콘크리트의 압축강도 추정을 위한 비파괴시험식의 적용성에 관한 연구)

  • Kim, Moo-Han;Choi, Se-Jin;Kang, Suk-Pyo;Kim, Jae-Hwan;Jang, Jong-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.3
    • /
    • pp.123-130
    • /
    • 2002
  • Recently, it is being studied on the high strength concrete in many laboratories and being applied to the construction field actually. But non-destruction testing equation that to be proposed about normal strength concrete in Japan has been using because the systematic study results for the estimation of compressive strength of high strength concrete do nit exist. So it is essential to suggest the non-destruction testing equation for the estimation of compressive strength of high strength concrete. This is an experimental study to analyze and investigate the non-destruction testing equation for the estimation of compressive strength of high strength concrete. The results are as follows; The relation between rebound number, pulse velocity and compressive strength of high strength concrete have lower coefficient than combined method of rebound number and pulse velocity. Also new non-destructive testing equation for the estimation on the compressive strength of high strength concrete was suggested in this study, and it is considered that these equations have possibility to be applied in domestic construction field.

The Relationship between Splitting Tensile Strength and Compressive Strength of Fiber Reinforced Concretes

  • Choi, Yeol;Kang, Moon-Myung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.155-161
    • /
    • 2003
  • This paper presents experimental and analytical results of glass fiber-reinforced concrete (GFRC) and polypropylene fiber-reinforced concrete (PERC) to investigate the relationship between tensile strength and compressive strength based on the split cylinder test (ASTM C496) and compressive strength test (ASTM C39). Experimental studies were performed on cylinder specimens having 150 mm in diameter an 300 mm in height with two different fiber contents (1.0 and 1.5% by volume fraction) at ages of 7, 28 and 90 days. A total of 90 cylinder specimens were tested including specimens made of the plain concrete. The experimental data have been used to obtain the relationship between tensile strength and compressive strength. A representative equation is proposed for the relationship between tensile strength and compressive strength of fiber-reinforced concrete (FRC) including glass and polypropylene fibers. There is a good agreement between the average experimental results and those calculated values from the proposed equation.

Prediction of compressive strength of concrete based on accelerated strength

  • Shelke, N.L.;Gadve, Sangeeta
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.989-999
    • /
    • 2016
  • Moist curing of concrete is a time consuming procedure. It takes minimum 28 days of curing to obtain the characteristic strength of concrete. However, under certain situations such as shortage of time, weather conditions, on the spot changes in project and speedy construction, waiting for entire curing period becomes unaffordable. This situation demands early strength of concrete which can be met using accelerated curing methods. It becomes necessary to obtain early strength of concrete rather than waiting for entire period of curing which proves to be uneconomical. In India, accelerated curing methods are used to arrive upon the actual strength by resorting to the equations suggested by Bureau of Indian Standards' (BIS). However, it has been observed that the results obtained using above equations are exaggerated. In the present experimental investigations, the results of the accelerated compressive strength of the concrete are used to develop the regression models for predicting the short term and long term compressive strength of concrete. The proposed regression models show better agreement with the actual compressive strength than the existing model suggested by BIS specification.

Effect of aggregate mineralogical properties on high strength concrete modulus of elasticity

  • Kaya, Mustafa;Komur, M. Aydin;Gursel, Ercin
    • Advances in concrete construction
    • /
    • v.13 no.6
    • /
    • pp.411-422
    • /
    • 2022
  • Aggregates mineralogical, and petrographic properties directly affect the mechanical properties of the produced high strength. This study is focused on the effects of magmatic, sedimentary, and metamorphic aggregates on the performance of high strength concrete. In this study, the effect of the mineralogical properties of aggregates on the compressive strength and modulus of elasticity of high-strength concrete was estimated by Artifical Neural Network (ANN). To estimate the compressive strength and elasticity modules, 96 test specimens were produced. After 28 days under suitable conditions, tests were carried out to determine the compressive strength and modulus of elasticity of the test specimens. This study also focused on the application of artificial neural networks (ANN) to predict the 28-day compressive strength and the modulus of elasticity of high-strength concrete. An ANN model is developed, trained, and tested by using the available test data obtained from the experimental studies. The ANN model is found to predict the modulus of elasticity, and 28 days compressive strength of high strength concrete well, within the ranges of the input parameters. These comparisons show that ANNs have a strong potential to predict the compressive strength and modulus of elasticity of high-strength concrete over the range of input parameters considered.

A Study Properties of concrete Recycling Cockle Shells as Fine Aggregate (고막 패각의 콘크리트 잔골재로 재활용 방안에 관한 연구)

  • Kim, Jeong-Sup;Kim, Kwang-Sup;Kim, Pan-Sun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.1
    • /
    • pp.141-146
    • /
    • 2004
  • 1) As a result of compressive strength experiment, rupture compressive strength showed more increases in specimens of 15% and 20% of Cockle shells in those of non-mixture. Comparing compressive strength between no-mixed Specimens and Specimens of containing Cockle shells, Specimens containing Cockle shells showed higher strength in 60 days and 90 days of age, and as ark Cockle is contained and age is elapsed, compressive strength is also increased In addition, estimation of compressive strength by reactive hardness in concrete using Cockle shells as aggregate shows low reliability. 2) As a result of experimenting compressive strength after heating, Specimens containing Cockle shells and non-mixed Specimens showed similar strength at $200^{\circ}C$, but compressive strength was lowered as content of Cockle shells increased at over $400^{\circ}C$ and heating temperature was higher. It is because Cockle shells was fired by heat and then its adhesion and bonding capacity were lost. 3) To sum up the above experimental results, it is found that using splitted Cockle shells as aggregate for concrete by 10%~20% showed the same or higher compressive strength and shear strength as concretes using general aggregate and it can be used as substitute aggregate of concrete. It is considered that for future use of splitted Cockle shells as substitute concrete aggregate, continuous researches of its durability, applicability and economy are needed.

A Study on the Compressive Strength Property of Concrete using Rice Straw Ash (소성볏짚을 혼입한 콘크리트의 압축강도 특성에 관한 연구)

  • Jeong, Euy-Chang;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.26-27
    • /
    • 2015
  • The purpose of this study was to investigate the compressive strength property into concrete using rice straw ash.. In an effort to evaluate the effects of rice straw ash as mineral admixture, rice straw ash was mixed with cement at the mixture ratio of 0, 5, 10 and 15% relative to the cement weight. When the mixture ratio of rice straw ash was 10%, the highest compressive strength was observed, while the strength tended to decrease when the mixture ratio of rice straw ash was 15% even if it exhibited higher compressive strength than the plain. And it was observed that compressive strength of concrete containing rice husk ash was a similar a compressive strength of concrete containing silica fume.

  • PDF

Prediction of Compressive Strength of Concretes Containing Silica Fume and Styrene-Butadiene Rubber (SBR) with a Mathematical Model

  • Shafieyzadeh, M.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.4
    • /
    • pp.295-301
    • /
    • 2013
  • This paper deals with the interfacial effects of silica fume (SF) and styrene-butadiene rubber (SBR) on compressive strength of concrete. Analyzing the compressive strength results of 32 concrete mixes performed over two water-binder ratios (0.35, 0.45), four percentages replacement of SF (0, 5, 7.5, and 10 %) and four percentages of SBR (0, 5, 10, and 15 %) were investigated. The results of the experiments were showed that in 5 % of SBR, compressive strength rises slightly, but when the polymer/binder materials ratio increases, compressive strength of concrete decreases. A mathematical model based on Abrams' law has been proposed for evaluation strength of SF-SBR concretes. The proposed model provides the opportunity to predict the compressive strength based on time of curing in water (t), and water, SF and SBR to binder materials ratios that they are shown with (w/b), (s) and (p).This understanding model might serve as useful guides for commixture concrete admixtures containing of SF and SBR. The accuracy of the proposed model is investigated. Good agreements between them are observed.

Relationship between Compressive Strength of Geo-polymers and Pre-curing Conditions

  • Kim, Hyunjung;Kim, Yooteak
    • Applied Microscopy
    • /
    • v.43 no.4
    • /
    • pp.155-163
    • /
    • 2013
  • Meta-kaolin (MK) and blast furnace slag (BS) were used as raw materials with NaOH and sodium silicate as alkali activators for making geo-polymers. The compressive strength with respect to the various pre-curing conditions was investigated. In order to improve the recycling rate of BS while still obtaining high compressive strength of the geo-polymers, it was necessary to provide additional CaO to the MK by adding BS. The specimens containing greater amounts of BS can be applied to fields that require high initial compressive strength. Alkali activator(s) are inevitably required to make geo-polymers useful. High temperature pre-curing plays an important role in improving compressive strength in geo-polymers at the early stage of curing. On the other hand, long-term curing produced little to no positive effects and may have even worsened the compressive strength of the geo-polymers because of micro-structural defects through volume expansion by high temperature pre-curing. Therefore, a pre-curing process at a medium range temperature of $50^{\circ}C$ is recommended because a continuous increase in compressive strength during the entire curing period as well as good compressive strength at the early stages can be obtained.

Statistical analysis of effects of test conditions on compressive strength of cement solidified radioactive waste

  • Hyeongjin Byeon;Jaeyeong Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.876-883
    • /
    • 2023
  • Radioactive waste should be solidified before being disposed of in the repository to eliminate liquidity or dispersibility. Cement is a widely used solidifying media for radioactive waste, and cement solidified waste should satisfy the minimum compressive strength of the waste acceptance criteria of a radioactive repository. Although the compressive strength of waste should be measured by the test method provided by the waste acceptance criteria, the method differs depending on the operating repository of different countries. Considering the measured compressive strength changes depending on test conditions, the effect of test conditions should be analyzed to avoid overestimation or underestimation of the compressive strength during disposal. We selected test conditions such as the height-to-diameter ratio, loading rate, and porosity as the main factors affecting the compressive strength of cement solidified radioactive waste. Owing to the large variance in measured compressive strength, the effects of the test conditions were analyzed via statistical analyses using parametric and nonparametric methods. The results showed that the test condition of the lower loading rate, with a height-to-diameter ratio of two, reflected the actual cement content well, while the porosity showed no correlation. The compressive strength assessment method that reflects the large variance of strengths was suggested.