• Title/Summary/Keyword: compression wood

Search Result 132, Processing Time 0.024 seconds

Effects of Melt-blending Condition and Additives on Mechanical Properties of Wood/PP Composites (용융혼합 조건과 첨가제가 목분/폴리프로필렌 복합체의 기계적 특성에 미치는 영향)

  • Ahn, Seong Ho;Kim, Dae Su
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.204-210
    • /
    • 2013
  • Effects of additives (lubricant and antioxidant) and melt-blending condition (temperature, time and rotor speed) on the mechanical properties of polypropylene-based wood polymer composites (WPCs) were investigated. WPCs were prepared by melt-blending followed by compression molding. To understand melt-blending procedure, torque change of the WPC melt-blend was monitored. Maleic anhydride modified PP and nanoclay were used as a compatibilizer and a reinforcing filler, respectively. UTM and izod impact tester were used to measure the mechanical properties of the WPCs and a color-difference meter was used to measure the discoloration of the WPCs according to melt-blending condition. The mechanical properties showed that the optimized melt-blending condition was $170^{\circ}C$, 15 min, and 60 rpm. The mechanical properties of the WPCs decreased with increasing lubricant and antioxidant content. The two step method, adding wood flour later separately during melt-blending, was more effective than the typical one step method for improving the mechanical properties of the WPCs.

Study of the Distribution Properties and LRFD Code Conversion in Japanese Larch

  • Park, Chun-Young;Pang, Sung-Jun;Park, Ju-Sang;Kim, Kwang-Mo;Park, Mun-Jae;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.94-100
    • /
    • 2010
  • This study was performed to develop an LRFD (Load Resistance Factored Design) Code for Domestic Larch. To accomplish his, we evaluated bending, compression, tension and shear strength. The results of the strength evaluation were utilized to verify the distribution and code conversion. For bending, tension and compressive strength, the Weibull distribution was well-fitted, but for shear strength we observed a normal distribution. For evaluating the bending and compressive strength, a full-sized specimen was used. A small clear specimen was used to test tension and shear strength. Compressive strength in particular was found to be affected by tight knots, although there was little difference between grades. In the code conversion, the design value of the LRFD was larger than the existing allowable stress value in the Korean Building Code. However, the allowable stress in this study was about two times higher than the value listed in the Korean Building Code. This result induced the difference between the soft and hard conversions. For greater reliability, the accumulation of additional data is necessary and further studies should be performed

Optimization of L-shaped Corner Dowel Joint in Modified Poplar using Finite Element Analysis with Taguchi Method

  • Ke, Qing;Zhang, Fan;Zhang, Yachi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.204-217
    • /
    • 2016
  • Modified poplar has emerged as a potential raw material for furniture production. Lack of specific modified poplar strength information; however, restricts applications in the furniture industry especially as related to strength in corner-joints. Optimization of strength in L-shaped corner dowel modified poplar joints under compression loads utilizing finite element analysis (FEA) by Taguchi method with the focus of this study. Four experiment factors (i.e., Structure Style, Tenon Length, Tenon Diameter, and Tenon Gap), each at three levels, were conducted by adopting a $L_9-3^4$ Taguchi orthodoxy array (OA) to determine the optimal combination of factors and levels for the von Mises stress utilizing ANSYS software. Results of Signal-to-Noise ratio (S/N) analysis and the analysis of variance (ANOVA) revealed the optimal L-shaped corner dowel joint in modified poplar is $45^{\circ}$ Bevel Butt in structure style, 24 mm in tenon length, 6 mm in tenon diameter, and 20 mm in tenon gap. Tenon length and tenon gap are determined to be significant design factors for affecting von Mises Stress. Confirmation tests with optimal levels and experimental test indicated the predicted optimal condition is comparable to the actual experimental optimal condition.

The Effect of Resin Impregnation Ratio on the Properties of Woodceramics Made from Broussonetia Kazinoki Sieb (수지함침율이 닥나무 우드세라믹의 성질에 미치는 영향)

  • Byeon, Hee-Seop;Kim, Jae-Min;Hwang, Kyo-Ki;Park, Seong-Cheol;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.178-184
    • /
    • 2010
  • This study was carried out to investigate the properties of woodceramics made from woody part of Broussonetia Kazinoki at different impregnation ratios of phenolic resin of 40, 50, 60, 70%. The physical and mechanical properties increased with increasing impregnation ratio. The highest mean values of density, bending strength, Brinell hardness and compressive strength were 0.66 g/$cm^3$, 53 kgf/$cm^2$, 187 kgf/$cm^2$, 126 kgf/$cm^2$, respectively. There were close correlations between density and bending strength, Brinell hardness and compressive strength, and between MOE and MOR.

Physical and Mechanical Properties of Local Styrax Woods from North Tapanuli in Indonesia

  • Iswanto, Apri Heri;Susilowati, Arida;Azhar, Irawati;Riswan, Riswan;Supriyanto, Supriyanto;Tarigan, Joel Elpinta;Fatriasari, Widya
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.539-550
    • /
    • 2016
  • The objective of this research was to evaluate physical and mechanical properties of three species of Styrax woods from North Tapanuli in Indonesia. The woods were more than 15 years old. Physical properties such as specific gravity, green moisture content, and volume shrinkage were determined by the procedures based on BS-373 standard for small clear specimen. Furthermore, mechanical properties, including modulus of rupture, modulus of elasticity, compression parallel to grain and hardness were also tested according to the standard. Along the stem direction, the edge section had better properties compared with those near the pith section. And the base section had also better properties than upper section. Based on the specific gravity, all of the Styrax woods in this research were classified into III-IV strength classes. A good dimensional stability was demonstrated by the value of the tangential and radial ratio which reached one. With the consideration of the mechanical properties, Styrax woods were suitable use for raw materials of light construction, furniture and handy craft.

Experimental study of the behavior of composite timber columns confined with hollow rectangular steel sections under compression

  • Razavian, Leila;Naghipour, Morteza;Shariati, Mahdi;Safa, Maryam
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.145-156
    • /
    • 2020
  • There are separate merits and demerits to wood and steel. The combination of wood and steel as a compound section is able to improve the properties of both and ultimately increase their final bearing capacity. The composite cross-section made of steel and wood has higher hardness while showing more ductility and the local buckling of steel is delayed or completely prevented. The purpose of this study is to investigate the behavior of composite columns enclosed in wooden logs and the hollow sections of steel that will be examined in a laboratory environment under the axial load to determine the final bearing capacity and sample deformation. In terms of methodology, steel sheet and carbon fiber reinforced polymer sheet (FRP) are tested to construct hollow rectangular sections and reinforce timber. Besides, the method of connecting hollow sections and timber including glue and screw has been also investigated. As a result, timber lumber enclosed with carbon fiber-reinforced polymer sheets in which fibers are horizontally located at 90° are more resistant with better ductility.

Mechanical Behavior of Treated Timber Boardwalk Decks under Cyclic Moisture Changes

  • LIU, Jian;JI, Yiling;LU, Jiaming;LI, Zhi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.68-80
    • /
    • 2022
  • Timber boardwalk decks are widely installed in parks and scenic areas to provide pedestrians an elevated footpath as well as harmony with the surrounding natural scene. In order to extend the lifespan of boardwalks in the outdoor environment, industrially treated pine timber, such as Pinus sylvestris, is often adopted. However, accidents of pedestrians injured by damaged boardwalk decks have been constantly reported. Therefore, the mechanical behavior of two different types of treated timber was examined in this study under repeated wetting and drying. An increasing number of radial cracks appeared with increasing length and width as more cycles were performed. A loss of more than 40% of the screw withdrawal capacity was observed in both end grain and face grain for the two types of timber after twelve accelerated wet-dry cycles, which coincides with the observation of damaged timber boardwalks in the field investigation. At the same time, it was found that both the compressive and the flexural strength was not sensitive to the wet-dry cycles especially at large cycle numbers.

Bending of Korea red pine (Pinus densiflora) by Microwave Irradiation (마이크로파 가열에 의한 소나무재의 곡가공)

  • Jung, Sung-Soo;Lee, Weon-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.17-22
    • /
    • 1999
  • The effect of microwave irradiation on wood bending was investigated in this study. The specimens irradiated with microwave were bent around a form by using pedestal-steel and clamps. The specimens, korea red pine (Pinus densiflora), for this test were water-soaked for 78 hours. Saturated specimens were boiled in water for an hour. The size of specimens was 350mm(L) by 20mm(R) by 10mm(T). These specimens were heated by microwave of 2,450MHz. The most suitable time for microwave irradiation seems to range from 60 to 90 seconds. Wood moisture content decreased remarkably with the increase of irradiation time. When a softened wood piece is bent, its convex side was stretched while the concave side was compressed. It can be compressed considerably, but stretched very little. Therefore the failure will be governed by the tensile breaking strain and occur mainly on the convex face. So we obtained results from three different bending process methods as follows : 1) When bending with a pedestal-steel, convex face had not tensile breakings, but concave face had compression fails. 2) When bending with a clamp, bending time increased more than pedestal-steel and occurred tensile breaking. 3) Bending with a pedestal-steel and a clamp was found to be the most excellent operation method in this study.

  • PDF

A curvature method for beam-column with different materials and arbitrary cross-section shapes

  • Song, Xiaobin
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.147-161
    • /
    • 2012
  • This paper presents a curvature method for analysis of beam-columns with different materials and arbitrary cross-section shapes and subjected to combined biaxial moments and axial load. Both material and geometric nonlinearities (the p-delta effect in this case) were incorporated. The proposed method considers biaxial curvatures and uniform normal strains of discrete cross-sections of beam-columns as basic unknowns, and seeks for a solution of the column deflection curve that satisfies force equilibrium conditions. A piecewise representation of the beam-column deflection curve is constructed based on the curvatures and angles of rotation of the segmented cross-sections. The resulting bending moments were evaluated based on the deformed column shape and the axial load. The moment curvature relationship and the beam-column deflection calculation are presented in matrix form and the Newton-Raphson method is employed to ensure fast and stable convergence. Comparison with results of analytic solutions and eccentric compression tests of wood beam-columns implies that this method is reliable and effective for beam-columns subjected to eccentric compression load, lateral bracings and complex boundary conditions.

Mechanical Properties of Cryptomeria japonica by the Differences of Stand Characteristics in Southern Region of Korea (남부지역 삼나무의 임분 특성에 따른 역학적 특성)

  • Hong, Nam-Euy;Won, Kyung-Rok;Yoo, Byung-Oh;Jung, Soo-Yung;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.320-326
    • /
    • 2015
  • Mechanical properties of woods are easily affected by the differences of site environment such as soil and climate changes. In this study, the relationship between mechanical properties and growth factors for Cryptomeria japonica stands in Jeollanam-do Province, Gyeongsangnam-do Province and Je-ju island was analyzed. From these plot data, bending strength, compressive strength, and shear strength were analyzed by Duncan's new multiple range test. The results of Duncan's new multiple range test analysis indicated that bending strength, compression strength, and shear strength were positively related to tree mean height, and stem number per ha, respectively, while they were inversely proportional to DBH (diameter at breast height), elevation, and soil drainage. As a result of this study, there are high correlations between mechanical properties of wood and stand characteristics of Cryptomeria japonica by the region, this findings are very useful to apply the silvicultural treatment system to produce high quality timber as a basic data on this species (distributed in southern region of Korea).