• Title/Summary/Keyword: compression tests

Search Result 1,566, Processing Time 0.024 seconds

Relationship between Stiffness and Shear Strength of Normally Consolidated Clay using Triaxial Compression Tests and Shear Wave Measurements (삼축압축시험과 전단파 계측을 이용한 정규압밀 점성토의 강성도와 전단강도의 상관관계)

  • Oh, Sang-Hoon;Kim, Hak-Sung;Kim, Eun-Jung;Park, In-Beom;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1124-1131
    • /
    • 2008
  • Thanks to a new in-situ seismic probe, using bender elements and penetration scheme, a simple linear relationship between undrained shear strength(Cu) and shear wave velocity(Vs) was obtained. This priceless relationship is worthy to be illuminated further in ideal laboratory environment. To avoid sampling disturbance effect, special consolidation cylinders were used to make normally consolidated specimens from kaolinite suspension. The undrained shear strengths of the specimens were measured using unconsolidated undrained triaxial compression tests. Also shear wave velocity measurements were performedprior to shearing the same specimens, using the bender elements installed in the base pedestal and the top cap of the triaxial compression cell. The Cu-Vs relationship is fairly linear and supports the linear trend of clayey silt obtained using field testing. Also the classic density-shear modulus relationship for soft clay proposed by Hardin and Black(1969) was once more verified hereby.

  • PDF

Behavior and design of perforated steel storage rack columns under axial compression

  • El Kadi, Bassel;Kiymaz, G.
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1259-1277
    • /
    • 2015
  • The present study is focused on the behavior and design of perforated steel storage rack columns under axial compression. These columns may exhibit different types of behavior and levels of strength owing to their peculiar features including their complex cross-section forms and perforations along the member. In the present codes of practice, the design of these columns is carried out using analytical formulas which are supported by experimental tests described in the relevant code document. Recently proposed analytical approaches are used to estimate the load carrying capacity of axially compressed steel storage rack columns. Experimental and numerical studies were carried out to verify the proposed approaches. The experimental study includes compression tests done on members of different lengths, but of the same cross-section. A comparison between the analytical and the experimental results is presented to identify the accuracy of the recently proposed analytical approaches. The proposed approach includes modifications in the Direct Strength Method to include the effects of perforations (the so-called reduced thickness approach). CUFSM and CUTWP software programs are used to calculate the elastic buckling parameters of the studied members. Results from experimental and analytical studies compared very well. This indicates the validity of the recently proposed approaches for predicting the ultimate strength of steel storage rack columns.

Localized deformation in sands and glass beads subjected to plane strain compressions

  • Zhuang, Li;Nakata, Yukio;Lee, In-Mo
    • Geomechanics and Engineering
    • /
    • v.5 no.6
    • /
    • pp.499-517
    • /
    • 2013
  • In order to investigate shear behavior of granular materials due to excavation and associated unloading actions, load-controlled plane strain compression tests under decreasing confining pressure were performed under drained conditions and the results were compared with the conventional plane strain compression tests. Four types of granular material consisting of two quartz sands and two glass beads were used to investigate particle shape effects. It is clarified that macro stress-strain behavior is more easily influenced by stress level and stress path in sands than in glass beads. Development of localized deformation was analyzed using photogrammetry method. It was found that shear bands are generated before peak strength and shear band patterns vary during the whole shearing process. Under the same test condition, shear band thickness in the two sands was smaller than that in one type of glass beads even if the materials have almost the same mean particle size. Shear band thickness also decreased with increase of confining pressure regardless of particle shape or size. Local maximum shear strain inside shear band grew approximately linearly with global axial strain from onset of shear band to the end of softening. The growth rate is found related to shear band thickness. The wider shear band, the relatively lower the growth rate. Finally, observed shear band inclination angles were compared with classical Coulomb and Roscoe solutions and different results were found for sands and glass beads.

A Study on the Production of Carbon Fiber Composites using Injection-molding Grade Thermoplastic Pellets (사출성형용 열가소성 펠렛을 이용한 탄소섬유 복합소재 제작에 관한 연구)

  • Jeong, E.C.;Yoon, K.H.;Kim, J.S.;Lee, S.H.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.402-408
    • /
    • 2016
  • A manufacturing technology of carbon fiber composites with thermoplastic polymer pellets and continuous woven fiber was investigated using a compression molding process. To secure the impregnation of resin into the porosity of fabric the composite specimens were prepared with general injection-molding grade polypropylene pellets and low viscosity polycarbonate pellets. Tensile tests of polypropylene and polycarbonate composites were performed. Polycarbonate composites showed higher fracture strength than that of polypropylene composites because of the difference of matrix properties. However, the increase rate of strength was lower than that of polypropylene composites due to the difference of coherence between matrix and reinforcement. To investigate the effect of carbon fiber volume fraction on the fracture strength variation polypropylene composites with different volume fraction were compression molded and tensile tests were performed together. It was shown that the fracture strength of the polypropylene composites increased by 3.2, 5.4 and 6.9 times with the increase of carbon fabric volume fraction of 0.256, 0.367, and 0.480, respectively.

Flexural Strength of cold-formed steel built-up composite beams with rectangular compression flanges

  • Dar, M. Adil;Subramanian, N.;Dar, Dawood A.;Dar, A.R.;Anbarasu, M.;Lim, James B.P.;Mahjoubi, Soroush
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.171-188
    • /
    • 2020
  • The past research on cold-formed steel (CFS) flexural members have proved that rectangular hollow flanged sections perform better than conventional I-sections due to their higher torsional rigidity over the later ones. However, CFS members are vulnerable to local buckling, substantially due to their thin-walled features. The use of packing, such as firmly connected timber planks, to the flanges of conventional CFS lipped I-sections can drastically improve their flexural performance as well as structural efficiency. Whilst several CFS composites have been developed so far, only limited packing materials have been tried. This paper presents a series of tests carried out on different rectangular hollow compression flanged sections with innovative packing materials. Four-point flexural tests were carried out to assess the flexural capacity, failure modes and deformed shapes of the CFS composite beam specimens. The geometric imperfections were measured and reported. The North American Specifications and Indian Standard for cold-formed steel structures were used to compare the design strengths of the experimental specimen. The test results indicate clearly that CFS rectangular 'compression' flanged composite beams perform significantly better than the conventional rectangular hollow flanged CFS sections.

Parametric study of the energy absorption capacity of 3D-printed continuous glass fiber reinforced polymer cruciform honeycomb structure

  • Hussain Gharehbaghia;Amin Farrokhabadi
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.393-405
    • /
    • 2023
  • In this paper, the energy absorption capability of a novel cruciform composite lattice structure was evaluated through the simulation of compression tests. For this purpose, several test samples of Polylactic acid cellular reinforced with continuous glass fibers were prepared for compression testing using the additive manufacturing method of material extrusion. Using a conventional path design for material extrusion, multiple debonding is probable to be occurred at the joint regions of adjacent cells. Therefore, an innovative printing path design was proposed for the cruciform lattice structure. Afterwards, quasistatic compression tests were performed to evaluate the energy absorption behaviour of this structure. A finite element model based on local material property degradation was then developed to verify the experimental test and extend the virtual test method. Accordingly, different combinations of unit cells' dimensions using the design of the experiment were numerically proposed to obtain the optimal configuration in terms of the total absorbed energy. Having brilliant energy absorption properties, the studied cruciform lattice with its optimized unit cell dimensions can be used as an energy absorber in crashworthiness applications. Finally, a cellular structure will be suitable with optimal behavior in crush load efficiency and high energy absorption.

A Consistent Quality Bit Rate Control for the Line-Based Compression

  • Ham, Jung-Sik;Kim, Ho-Young;Lee, Seong-Won
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.5
    • /
    • pp.310-318
    • /
    • 2016
  • Emerging technologies such as the Internet of Things (IoT) and the Advanced Driver Assistant System (ADAS) often have image transmission functions with tough constraints, like low power and/or low delay, which require that they adopt line-based, low memory compression methods instead of existing frame-based image compression standards. Bit rate control in the conventional frame-based compression systems requires a lot of hardware resources when the scope of handled data falls at the frame level. On the other hand, attempts to reduce the heavy hardware resource requirement by focusing on line-level processing yield uneven image quality through the frame. In this paper, we propose a bit rate control that maintains consistency in image quality through the frame and improves the legibility of text regions. To find the line characteristics, the proposed bit rate control tests each line for ease of compression and the existence of text. Experiments on the proposed bit rate control show peak signal-to-noise ratios (PSNRs) similar to those of conventional bit rate controls, but with the use of significantly fewer hardware resources.

Yielding Behavior of Compacted Decomposed Granitic Soil under Anisotropic Compression Previous Loading (비등방 압축의 선행재하를 받은 다짐풍화화강토의 항복거동)

  • Jeong, Sang-Guk;Kang, Kwon-Soo;Yang, Jae-Hyouk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.233-244
    • /
    • 2001
  • Stress-strain behaviour of soil varies based on stress path and stress history. There has been few study on the characteristics of yielding curve which has anisotropic compression stress history in decomposed granite soil. During this study, various stress path tests in previous anisotropic compression stress history are performed on compacted decomposed granite soil sampled at Iksan, Chonbuk. Yielding points are determined from various stress-strain curves (${\eta}-{\varepsilon}$, ${\eta}$-v, and ${\eta}$-k, ${\eta}$-W curves). Stress-strain curve is certified which shows yielding point very clearly. The shape and characteristics of anisotropic compression yielding curves are examined. The main results are summarized as follows : 1) p' constant and compressive direction in stress paths, which has experienced previous anisotropic compression stress history, shows relatively dear yielding points. 2) Yielding curves defined from ${\eta}$-k and ${\eta}$-W curve show almost perfect ellipse. 3) Directions of plastic strain incremental vector($dv^p/d{\varepsilon}^p$) are not perpendicular to yielding curve.

  • PDF

Lateral Compression and Dowel Bearing Property of Japanese Larch Grown in Korea (국산 낙엽송재의 횡압축과 다우얼 지압 성능)

  • Hwang, Kweonhwan;Park, Byung-Su
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.61-69
    • /
    • 2008
  • To examine the compression properties of structural members, the compression and bearing tests were conducted in parallel- and perpendicular-to-grain loading using domestic Japanese larch (Larix kaempferi (Lamb.) Carriere). Compression (bearing) properties with the length of a specimen and the contact length of the bearing plate were investigated, and deformations at each specimen length from the point of bearing force were measured to evaluate the effective end distance tabulated in the present practice (Korean Building Code). Compression (bearing) properties varied with the size of the bearing plate, and the end distance for dowel-type fastener taken into consideration of the specimen's deformation, for the safe design, should be applied with over 7 D.

Comparison of MCC and SSC Models Based on Numerical Analysis of Consolidation Test (압밀시험의 수치해석에 의한 MCC 모델과 SSC 모델 비교)

  • Kwon, Byenghae;Eam, Sunghoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.2
    • /
    • pp.1-12
    • /
    • 2024
  • In order to integrate two consolidation theories of Terzaghi's consolidation theory and Mesri's secondary compression theory and to identify a model suitable for analyzing stress-strain behavior over time, numerical analysis on consolidation tests were conducted using a modified cam-clay model and a soft soil creep model and the following conclusions were obtained. The results of numerical analysis applying the theory that a linear proportional relationship is established between the void ratio at logarithmic scale and the permeability coefficient at logarithmic scale is better agreement with the result of oedometer test than the results of applying constant hydraulic conductivity. The modified cam-clay model is a model that does not include secondary compression, but the slope of the normal consolidation line corresponding to the compression index of the standard consolidation test includes secondary compression, so the actual settlement curve over time is lower than the predicted value through numerical analysis. It always gets smaller. Other previous studies that applied Terzaghi's consolidation theory to consolidation test analysis showed the same results and were cross-confirmed. The soft soil creep model, which includes secondary compression in the theory, showed good agreement in all sections including secondary compression in the consolidation test results. It was judged appropriate to use a soft soil creep model when performing numerical analysis of soft clay ground.