• 제목/요약/키워드: compression fatigue test

검색결과 77건 처리시간 0.026초

Carbon Fabric/Epoxy 적층판의 인장-압축 피로거동 (Tension-Compression Fatigue Behavior of Carbon Fabric/Epoxy Laminates)

  • 김진봉;김태욱
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.60-64
    • /
    • 2001
  • In this paper, the tension-compression fatigue test method and the fatigue life characteristics of carbon fabric/epoxy laminate coupon are presented. To avoid the buckling during the compression, a proper design for the test coupons is essential. The critical buckling loads for the coupons are calculated by assuming the coupons as columns under two types of fixed conditions. The first is that both ends of each coupon are perfectly clamped, the second is that both ends of each coupon are simply supported. The strain-load curves are obtained by compressing the representative coupons, on each surface of which a strain gage is attached. The buckling loads obtained from the tests are all between the two calculated critical buckling loads. All the coupons are broken by the compression during the fatigue tests. It is estimated to be the reason that the fatigue load causes delamination before the eventual failure of each coupon, and sequentially the micro-buckling in the delaminated region drives each coupon into fatigue failure during the compression. The S-N curve, the fatigue life characteristics of carbon fabric/epoxy is obtained.

  • PDF

Al-Si-Ca 합금 폼의 압축 피로 거동 (Compression-Compression Fatigue Behavior of Al-Si-Ca alloy Foams)

  • 이창훈;하산;김엄기;정길도
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.190-195
    • /
    • 2004
  • The compression-compression fatigue properties of the closed cell Al-Si-Ca alloy foams have been studied. The monotonic and cyclic compressive properties were compared with each other and the fatigue stress-life (S-N) curves were presented. In compression-compression fatigue, the crushing was found to initiate in a single band which broadens gradually with additional fatigue cycles. Progressive shortening of the specimen took place due to a combination of low cycle fatigue failure and cyclic ratcheting which is in accordance with the findings of previous researchers [1-3]. Young's modulus of the foam was found to decrease with the increasing strain in case of fatigue test however in case of monotonic compression test the value of Young's modulus increased with the strain (number of cycles). The endurance limit on the basis of $10^{7}$ cycles obtained by extrapolating the experimental results were 0.98 MPa and 1.70 MPa for load ratios 0.1 and 0.5 respectively which are 34 % and 59 % of the plateau stress.

  • PDF

중공단면 복합소재 교량 바닥판의 실험적 피로특성 분석 (Experimental Fatigue Characteristics of Composite Bridge Deck of Hollow Section)

  • 이성우;홍기증
    • 한국전산구조공학회논문집
    • /
    • 제19권4호
    • /
    • pp.337-345
    • /
    • 2006
  • 본 연구에서는 개발된 중공단면 복합소재 교량 바닥판에 대해 피로거동을 평가하기 위하여 거더 지지부에서의 압축피로 시험과 2.8m 길이의 휨시험체 모델에 대한 휨피로시험을 수행하였다. 피로하중은 도로교설계기준의 제시된 DB24 트럭 후륜 축하중에 대해 200만회까지 반복 재하하였으며, 압축피로시험의 경우에는 복합소재 바닥판 부재와 바닥판 튜브간의 연결부에 대한 피로성능을, 휨피로시험의 경우에는 복합소재 바닥판 및 주형연결부에 대한 피로성능을 분석하였다.

Effects of Vibration Fatigue on Compression Strength of Corrugated Fiberboard Containers for Packaging of Fruits during Transport

  • Jung, Hyun-Mo;Park, Jeong-Gil
    • Journal of Biosystems Engineering
    • /
    • 제37권1호
    • /
    • pp.51-57
    • /
    • 2012
  • Purpose: The compression strength of corrugated fiberboard containers used to package agricultural products rapidly decreases owing to various environmental factors encountered during the distribution of unitized products. The main factors affecting compression strength are moisture absorption, long-term top load, and fatigue caused by shock and vibration during transport. This study characterized the durability of corrugated fiberboard containers for packaging fruits and vegetables under simulated transportation conditions. Methods: Compression tests were done after corrugated fiberboard containers containing fruit were vibrated by an electro-dynamic vibration test system using the power spectral density of routes typically traveled to transport fruits and vegetables in South Korea. Results: To predict loss of compression strength owing to vibration fatigue, a multiple nonlinear regression equation ($r^2=0.9217$, $RMSE=0.6347$) was developed using three independent variables of initial container compression strength, namely top stacked weight, loading weight, and vibration time. To test the applicability of our model, we compared our experimental results with those obtained during a road test in which peaches were transported in corrugated containers. Conclusions: The comparison revealed a highly significant ($p{\leq}0.05$) relationship between the experimental and road-test results.

철도차량 대차 적용 유리섬유/에폭시 4-매 주자직 적층 복합재의 인장-압축 피로특성 평가 연구 (A Study on the Evaluation of Tension-Compression Fatigue Characteristics of Glass Fiber/Epoxy 4-Harness Satin Woven Laminate Composite for the Railway Bogie Application)

  • 전광우;신광복;김정석
    • Composites Research
    • /
    • 제23권5호
    • /
    • pp.22-29
    • /
    • 2010
  • 본 논문은 철도차량 경량화 재질로 적용된 유리섬유/에폭시 4-매 주자직 적층 복합재료의 인장-압축 피로특성을 평가하였다. 유리섬유/에폭시 4-매 주자직 적층 복합재료의 인장-압축 피로시험은 경사, 위사 그리고 ${\pm}45^{\circ}$ 방향으로 적층된 시험편에 대하여 수행하였다. 인장-압축 피로시험은 5Hz의 주파수를 갖으며, 응력비(R)는 -1로 수행하였다. 인장-압축 피로시험 수행 시 압축하중에 의한 시험편의 좌굴을 방지하기 위하여 좌굴방지지그를 설계하고 이를 시험에 적용하였다. 또한, Goodman 선도는 유리섬유/에폭시 4-매 주자직 적층 복합재의 피로특성과 수명을 평가하기 위해 사용하였다. 유리섬유/에폭시 4-매 주자직 적층 복합재료의 인장-압축 피로시험결과 경사방향 적층 복합재의 피로특성이 기존 금속재 대차에 적용되는 SM490에 비하여 우수한 것으로 나타났다.

표면균열을 갖는 원형봉재 시편을 이용한 고온 피로균열성장 연구 (A Study on Elevated Temperature Fatigue Crack Growth Using Round Bar Specimen with a Surface Crack)

  • 소태원;윤기봉
    • 대한기계학회논문집A
    • /
    • 제20권11호
    • /
    • pp.3415-3423
    • /
    • 1996
  • The compact tension specimen geometry has been widely used for measuring fatigue crack growth rates at elevated temperature when the fatigue load is under tension/tension condition. However, most of the elevated temperature components which have significant crack growth life experience fatigue load under tension/compression conditions. Thus test techniques are required since the compact tension specimen cannot be used for tension/compression loading. In this paper, a simplified test procedure for measureing fatigue crack growth rates is proposed, which employs a round bar specimen with a small surface crack. Fatigue crack growth rates under tension/ tension loading conditions at elevated temperature were measured according to the proposed procedure and compared with those previously measured by C/(T) specimens. Since both the measured crack growth rates were comparable, the fatigue crack growth rates under tension/ compression load can be reliably measured by the proposed procedure. For monitoring crack depth. DC electric potential method is employed and an optimal probe location and current input conditions were proposed.

생체 역학적 분석에 의한 Compression Hip Screw의 디자인 요소에 대한 평가 (Mechanical Response of Changes in Design of Compression Hip Screws with Biomechanical Analysis)

  • 문수정;이희성;권순영;이성재;안세영;이훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1172-1175
    • /
    • 2004
  • At present, CHS(Compression Hip Screw) is one of the best prosthesis for the intertrochanteric fracture. There is nothing to evaluate the CHS itself with the finite element analysis and mechanical tests. They have same ways of the experimental test of the ASTM standards. The purpose of this study is to evaluate the existing CHS and the new CHS which have transformational design factors with finite element analysis and mechanical tests. The mechanical tests are divided into compression tests and fatigue test for evaluating the failure load, strength and fatigue life. This finite element method is same as the experimental test of the ASTM standards. Under 300N of compression load at the lag screw head. There are less differences between Group (5H, basic type) and Group which has 8 screw holes. However, there are lots of big differences between Group and Group which is reinforced about thickness of the neck range. Moreover, the comparison of Group and Group shows similar tendency of the comparison of Group and Group . The Group is reinforced the neck range from Group. After the experimental tests and the finite element analysis, the most effective design factor of the compression hip screws is the reinforcement of the thickness, even though, there are lots of design factors. Moreover, to unite the lag screw with the plate and to analyze by static analysis, the result of this method can be used with experimental test or instead of it.

  • PDF

피로시험용 프로그램 개발에 관한 연구 (A Study on the Program Development of Fatigue Test)

  • 이종선
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.275-280
    • /
    • 1999
  • This study is object to program development of fatigue test for universal testing machine. Fatigue program is consist of test simulation, data analysis and print report by control fatigue testing program which expansively applies tension-compression tests with using oil pressure mechanism by Visual Basic software running under windows 98.

  • PDF

Material Characteristics of Dental Implant System with In-Vitro Mastication Loading

  • 정태곤;정용훈;이수원;양재웅;정재영;박광민;강관수
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.72-72
    • /
    • 2018
  • A dynamic fatigue characteristic of dental implant system has been evaluated with applying single axial compressive shear loading based on the ISO 14801 standard. For the advanced dynamic fatigue test, multi-directional force and motion needed to be accompanied for more information of mechanical properties as based on mastication in oral environment. In this study, we have prepared loading and motion protocol for the multi-directional fatigue test of dental implant system with single (Apical/Occlusal; AO), and additional mastication motion (Lingual/Facial; LF, Mesial/Distal; MD). As following the prepared protocol (with modification of ISO 14801), fatigue test was conducted to verify the worst case results for the development of highly stabilized dental implant system. Mechanical testing was performed using an universal testing machine (MTS Bionix 858, MN, USA) for static compression and single directional loading fatigue, while the multi-directional loading was performed with joint simulator (ADL-Force 5, MA, USA) under load control. Basically, all mechanical test was performed according to the ISO 14801:2016 standard. Static compression test was performed to identify the maximum fracture force with loading speed of 1.0 mm/min. A dynamic fatigue test was performed with 40 % value of maximum fracture force and 5 Hz loading frequency. A single directional fatigue test was performed with only apical/occlusal (AO) force application, while multi directional fatigue tests were applied $2^{\circ}$ of facial/lingual (FL) or mesial/distal (MD) movement. Fatigue failure cycles were entirely different between applying single-directional loading and multi-directional loading. As a comparison of these loading factor, the failure cycle was around 5 times lower than single-directional loading while applied multi-directional loading. Also, the displacement change with accumulated multi-directional fatigue cycles was higher than that of single directional cycles.

  • PDF