• Title/Summary/Keyword: compressibility factor

Search Result 56, Processing Time 0.023 seconds

Accurate Determination of Hydrogen Adsorption on Metal Materials Considering the Equations of State and its Influential Errors

  • Cho, Won-Chul;Park, Chu-Sik;Han, Sang-Sup
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1229-1230
    • /
    • 2006
  • Adsorption isotherms of hydrogen by step-by-step method are widely used. However, the relations between the equations of state and the accumulated errors produced by step-by-step method and the mechanical errors of pressure or temperature controller were not analyzed. Considering the influence of various errors on the equations of state, we could find out the factors and compare the performance of the equations of state.

  • PDF

ESTIMATION OF CAKE FORMATION ON MICROFILTRATION MEMBRANE SURFACE USING ZETA POTENTIAL

  • Alayemieka, Erewari;Lee, Seock-Heon;Oh, Jeong-Ik
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.201-207
    • /
    • 2006
  • A simple empirical model with good quantitative prediction of inter-particle and intra-particle distance in a cake layer with respect to ionic strength was developed. The model is an inverse length scale with functions of interaction energy and hydrodynamic factor and it explains that the inter-particle and intra-particle distance in a cake is directly related to the effective size of particles. Particle compressibility with respect to ionic strength was also predicted by the model. The model corroborated very well with experimental results of polystyrene microsphere latex particles microfiltation in a dead end operation. From the results of the model, specific cake resistance could be controlled by the same variables affecting the height of particle energy barrier described by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory.

On the Critical Behavior of Phase Changes of a Forward-Scattered Light in a Nonpolar Binary Liquid Mixture

  • Kim, Kyoung-Ran;Kang, Young-Soo;Lee, Dong-J.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.12
    • /
    • pp.1749-1753
    • /
    • 2002
  • The effect of concentration fluctuations on the changes of azimuth and ellipticity are analytically obtained in a binary chiral liquid mixture, when the incident light is completely linearly polarized above (or below) the horizontal at 45°. The important results are as follows;(1) When the binary liquid is in the critical region far from the cr5itical point, the ellipticity change is proportional to isothermal compressibility factor and the fifth order of frequency and shows the logarithmic divergence. (2) In the case that the system is in the critical region far from the critical point, the azimuth change is solely due to the molecular contribution. As the system approaches to the critical point, the effect of fluctuations becomes important. If it is in the extreme close to the critical point, the term due to the concentration fluctuations is comparable to or larger than the molecular contribution.

Empirical Equations for Physical Properties of Halon-1301 and $CO_2$ (Halon-1301과 $CO_2$의 물성에 관한 실험식)

  • 노경호;송명석;한순구;김재덕;이윤우
    • Fire Science and Engineering
    • /
    • v.16 no.2
    • /
    • pp.51-58
    • /
    • 2002
  • For Halon-1301 regulated by Montreal Protocol and $CO_2$as its alternatives, the empirical equations of density, viscosity, and enthalpy were correlated in terms of temperature. They were obtained by regression analysis from the experimental data in the literature. The empirical equation of density was expressed as compressibility factor by the second- order function of temperature. The empirical equation of viscosity was formulated as a power function, and a correction factor was considered to cover the wider range of temperature. Finally, heat capacity as well as enthalpy were well fitted by empirical form of the second-order temperature. The correlation coefficients of the empirical equations in this work were more than 0.99.

Estimation of Soft Ground Piezocone Factors at Gwangyang, Jeonnam (전남 광양지역 연약지반의 피에조콘계수 산정)

  • Oh, Dongchoon;Kim, Kibeom;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.59-67
    • /
    • 2019
  • Using the results from laboratory soil test, field vane test and piezocone penetration test, the engineering characteristics of the soft ground at east side of Gwangyang Port, which is located at south coast of Jeollanam-do, were investigated and optimal piezocone penetration test depth was derived to calculate piezocone factor. In this paper, the results of 61 laboratory soil tests, 226 times of field vane tests and 26 piezocone penetration tests were used. The result of laboratory soil test suggested that some physical properties such as specific gravity, moisture content, liquid limit and plastic index and others are higher than other south coast regions, meanwhile uniaxial compression strength, undrained shear strength, defined as mechanical property, appeared to be relatively small, distributed widely. According to the plastic chart, the ground was classified as high compressibility clay and low compressibility clay, mostly represent to Type 3 clay by Robertson (1990)'s classification chart. Piezocone factor was calculated by empirical method, based on the undrained shear strength which was obtained by the field vane test. According to the analysis with 3 different depth range, to set the appropriate measured depth range of piezocone penetration for comparation, using average value of the range of 5 times the vane length showed the highest correlation.

Study on the Critical Nozzle Flow of Hydrogen Gas with Real Gas Effects (실제기체 효과를 고려한 수소기체의 임계노즐 유동에 관한 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3003-3008
    • /
    • 2007
  • Critical nozzle has been frequently employed to measure the flow rate of various gases, but hydrogen gas, especially being at high-pressure condition, was not nearly dealt with the critical nozzle due to treatment danger. According to a few experimental data obtained recently, it was reported that the discharge coefficient of hydrogen gas through the critical nozzle exceeds unity in a specific range of Reynolds number. No detailed explanation on such an unreasonable value was made, but it was vaguely inferred as real gas effects. For the purpose of practical use of high-pressure hydrogen gas, systematic research is required to clarify the critical nozzle flow of high-pressure hydrogen gas. In the present study, a computational fluid dynamics(CFD) method has been applied to predict the critical nozzle flow of high-pressure hydrogen gas. Redlich-Kwong equation of state that take account for the forces and volume of molecules of hydrogen gas were incorporated into the axisymmetric, compressible Navier-Stokes equations. A fully implicit finite volume scheme was used to numerically solve the governing equations. The computational results were validated with some experimental data available. The results show that the coefficient of discharge coefficient is mainly influenced by the compressibility factor and the specific heat ratio, which appear more remarkable as the inlet total pressure of hydrogen gas increases.

  • PDF

Thermodynamic Empirical Equations for Physical Properties of Inert Gas Mixtures (불활성 기체 혼합물의 물성에 관한 열역학적 실험식)

  • 김재덕;여미순;이윤우;노경호
    • Fire Science and Engineering
    • /
    • v.17 no.2
    • /
    • pp.43-49
    • /
    • 2003
  • For the inert gases of Ar, $N_2$and $CO_2$, the empirical equations of the gas mixture were correlated in terms of saturated pressure, density and viscosity. They were obtained by regression analysis based on the mixing rule. The empirical equation of saturated pressure was assumed as the first order function of temperature. The empirical form of density was expressed as compressibility factor and saturated pressure while the empirical equation of viscosity was formulated as a power function of temperature. This empirical equations of the physical properties were obtained in the composition of Ar, $N_2$and $CO_2$, 40/50/10(mol. %).

An Effect on the Running Accuracy of the Perpendicularity Error in the Spindle System Supported with Externally-Pressurized Air Bearing (외부가압 공기 베어링 지지 스핀들 시스템에서 직각도 오차가 운전 정밀도에 미치는 영향)

  • 고정석;김경웅
    • Tribology and Lubricants
    • /
    • v.15 no.3
    • /
    • pp.257-264
    • /
    • 1999
  • Recently as electronics and semi-conductor industry develop, ultra-precision machine tools that use air-spindle with externally pressurized air bearing appear in need of ultra-precision products which demand high precision property. Effects of air compressibility absorbs the vibration of shaft, this is called averaging effect, however, the higher running accuracy is demanded by degrees, the more important factor is machining errors that affect running accuracy of shaft. Actually, it would be very important in the view points of running accuracy to understand effects of machining errors on the running accuracy of the spindle system quantitatively to design and manufacture precision spindle system in the aspect that efficiency in manufacturing spindle system and performance in operation. So fu, there are some researches on the effects that machining error affect running accuracy. However, because these researches deal with one bearing of spindle system, these results aren't enough to explain how much machining errors affect running accuracy in the typical spindle system overall. In this study, we investigate the effects of the perpendicularity error of bearing and shaft on running accuracy of spindle system that consists of journal and thrust bearing theoretically, and suggest design guideline about shape tolerances.

A Study on the pressure Rising Considered Fluid inertia in the Notch Area of Balanced Type Vane Pump (노치 영역에서 유체 관성을 고려한 압력 평형형 베인 펌프의 압력 상승에 관한 연구)

  • Jo, Myeong-Rae;Han, Dong-Cheol;Mun, Ho-Ji;Park, Min-Ho;Bae, Hong-Yong
    • Tribology and Lubricants
    • /
    • v.13 no.1
    • /
    • pp.14-20
    • /
    • 1997
  • This paper reports on theoretical study of the pressure overshoot in the delivery ports and pressure rising within balanced type vane pump. Pressure overshoot occur due to the accelerated fluid through the notch, so, result in pressure ripple, flow ripple, and noise. For calculating the pressure rising and fluctuations of pressure, we have modeled mathematically used continuity equation based on compressibility and momentum equation considered fluid inertia in the notch, and analyzed simultaneously. As a results of analysis, we have found oscillation of pressure and compression chamber pressure depend on the rotational speeds, notches. Using the model, notches have been shown to be important design factor in relaxing the rapid pressure rising and reducing the amplitudes of pressure overshoot.

Prediction of Heat Transfer Rates to Spray Water Droplets in a High Pressure Mixture Composed of Saturated Steam and Noncondensable Hydrogen Gas (고압의 포화수증기-비응축성 수소기체 혼합기 속에서 분무수적으로의 열전달을 예측)

  • Lee, S.K.;Jo, J.C.;Cho, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.5
    • /
    • pp.337-349
    • /
    • 1991
  • Heat and mass transfer rates to spray water droplets for spray transients in a high pressure vessel have been predicted by two different droplet models: the complete mixing model and the non-mixing model. In this process, the ambient fluid surrounding the droplets is a real-gas mixture composed of saturated steam and noncondensable hydrogen gas at high pressure. The physical properties of the mixture are estimated by applying the concept of compressibility factor and using appropriate correlations. A computer program, DROPHMT, to calculate the heat and mass transfer rates for two different droplet models has been developed. As an illustrative application of the computer program to engineering practices, heat and mass transfer rates to spray water droplets for spray transients in a Pressurized Water Reactor (PWR) pressurizer have been calculated, and the typical results have been provided.

  • PDF