• Title/Summary/Keyword: compressed natural gas vehicles

Search Result 41, Processing Time 0.026 seconds

Assessment of Composite Material Flaws on the Type III Cylinders for Compressed Natural Gas Vehicles (압축천연가스자동차용 Type III 용기의 복합재 결함 평가)

  • Kim, Young-Seob;Kim, Lae-Hyun;Yang, Dong-Ju
    • Journal of Energy Engineering
    • /
    • v.20 no.2
    • /
    • pp.90-95
    • /
    • 2011
  • This study was conducted to judge requalification of cylinders by assessing composite flaws such as scratches, cuts, and gouges damaging on the composite of Type III cylinders for compressed natural gas vehicles. As a result of the flaw tolerance test, all specimens have satisfied with minimum requirement cycles according to damage levels based on ISO 19078 and cyclic performance for pressure showed beyond twenty thousands in damage level 1 and 2, and did eighteen thousands to twenty-one thousands in damage level 3. Eight of twelve specimens failed the test due to composite flaws and the rest of the cylinders failed regardless of flaws. The results of Finite Element Method followed by the computer simulation indicated that the stress of 79.5 MPa calculated on the flaw model of $1.25\;mm{\times}200\;mm$ and the stress of 66.6 MPa on the non-flaw model when the service pressure applied to inside of cylinder. The difference between the models is about 19.37%. We concluded that this difference influences fatigue life and this flaw model is a critical value affecting cyclic performance of cylinders.

A Study on the Emission Characteristics of LNG-diesel Dual-fuel Engine for Euro 2 Standard (Euro 2 기준 LNG-경유 혼소엔진의 배출가스 특성에 관한 연구)

  • Cho, Gyu-Baek;Kim, Chong-Min;Kim, Dong-Sik;Kim, Hong-Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.1
    • /
    • pp.9-14
    • /
    • 2011
  • Heavy duty diesel engine has relatively small portion of whole vehicles due to long drive distance and large engine displacement, but largely influences atmosphere environment. City buses changed to CNG (Compressed Natural Gas) bus with Korea-Japan Worldcup. Heavy duty truck and intercity bus, however, were impossible to use CNG because those kinds of vehicles had long drive distance and CNG station was installed mainly at the around of the bus garage of city. Insulation container storing the natural gas as a liquid makes heavy duty truck and intercity bus possible to use the natural gas. Drive using diesel is possible where is hard to recharge the gas. With LNG (Liquefied Natural Gas), the dependence on oil is largely decreased, PM (Particulate Matter) and NOx which is chronic disadvantage of diesel is remarkably reduced and finally $CO_2$, the representative green house gas, is reduced over 10%.

INVESTIGATION OF EMISSION RATES OF AMMONIA, NITROUS OXIDE AND OTHER EXHAUST COMPOUNDS FROM ALTERNATIVE- FUEL VEHICLES USING A CHASSIS DYNAMOMETER

  • Huai, T.;Durbin, T.-D.;Rhee, S.-H.;Norbeck, J.-M.
    • International Journal of Automotive Technology
    • /
    • v.4 no.1
    • /
    • pp.9-19
    • /
    • 2003
  • Exhaust emissions were characterized for a fleet of 10 alternative-fuel vehicles (AFVx) including 5 compressed natural gas (CNG) vehicles. 3 liquefied petroleum gas (LPG) vehicles and 2 85% methanol/15% California Phase 2 gasoline (M85) vehicles. In addition to the standard regulated emissions and detailed speciation of organic gas compounds, Fourier Transform Infrared Spectroscopy (FTIR) was used to measure ammonia (NH$_3$) and nitrous oxide ($N_2$O) emissions. NH$_3$, emissions averaged 0.124 g/mi for the vehicle fleet with a range from <0.004 to 0.540 g/mi. $N_2$O emissions averaged 0.022 g/mi over the vehicle fleet with range from <0.002 to 0.077 g/mi. Modal emissions showed that both NH$_3$, and $N_2$O emissions began during catalyst light-off and continued as the catalyst reached its operating temperature. $N_2$O emissions primarily were formed during the initial stages of catalyst light-off. Detailed speciation measurements showed that the principal component of the fuel was also the primary organic gas species found in the exhaust. In particular, methane, propane and methanol composed on average 93%, 79%, and 75% of the organic gas emissions, respectively, for the CNG, LPG. and M85 vehicles.

Study on Adiabatic Performance of LNG Storage Tank for Vehicles (차량용 LNG연료용기의 단열성능에 관한 연구)

  • Han, Jeong-Ok;Lee, Young-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.31-35
    • /
    • 2008
  • Natural gas vehicles are being applied to city buses for improving air quality in metropolitan and have proved the effective way to reduce the pollutant emissions. Liquified Natural Gas(LNG) has also attempted a vehicle fuel in order to raise the fuel storage density that is a disadvantage of Compressed Natural Gas(CNG). This paper described insulation characteristic of a LNG storage tank. From the results, adiabatic coefficient of a tested tank was around $40J/h{\cdot}^{\circ}C{\cdot}m^2$ and it was the lower level than gas safety regulation limit. Two experimental methods were adopted to justify the evaluation results and they were revealed that the results were very similar to each other. Also, through testing relief valve operation characteristic it was investigated venting amount of boiled off gas.

  • PDF

A Trend of Catalyst Technology for After treatment on H2-CNG Mixed Fuel Vehicles (수소-CNG 혼합연료 차량에서의 후처리장치용 촉매기술 동향)

  • Lee, Ung-Jae;Shim, Kyung-Sil;Jung, Ju-Yong;Kim, Tae-Min
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.21-26
    • /
    • 2011
  • Emissoin of heavy duty vehicle have much positioned in air pollution although its limited number of vehicles. CNG vehicles are coming to the fore as one of the solution of diesel vehicles. CNG vehicles exhaust smaller emission than diesel vehicles on PM and NOx. In this study, aftertreatment technologies are introduced on vehicles which use CNG and hydrogenmixed fuel. Withmixing hydrogen with CNG, combustion efficiency is enhanced, and harmful emission might be decreased, but methane that is main component of CNG brings green house effect. In order to remove methane and NOx in exhaust gas of CNG engine, methane oxidation catalyst and SCR technologies were respectively analyzed.

Development Trend of Low Cost Space Launch Vehicle and Consideration of Next Generation Fuel (저비용 우주 발사체 개발 동향 및 이를 위한 차세대 연료에 대한 고찰)

  • Bae, Jinhyun;Koo, Jaye;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.10
    • /
    • pp.855-862
    • /
    • 2017
  • Due to the weight reduction and miniaturization of satellites, there is a growing interest in low-cost launch vehicles, which are cheaper to launch than larger launch vehicles. One of the most cost-effective ways to reduce the cost of launch vehicles is the reuse of vehicles. Most companies that are developing low cost launch vehicles are also adopting a vehicles reuse approach. Along with this reuse purpose, the demand for environmentally friendly space launch vehicles has increased, so the choice of fuel used for low cost launch vehicles has also become very important. Methane and hydrogen-enriched compressed natural gas (HCNG), which makes more energy-efficient by adding hydrogen to methane, are considered to be the most suitable when considering other factors such as energy density among the fuels that are eco-friendly and capable of reusing the launch vehicles. This study investigated the trends of low-cost launch vehicle and rocket fuel in the world as a reference for setting up domestic space development after the development of Korea Space Launch Vehicle-II.

Performance characteristics of CNG engine at various compression ratios (압축비 변경에 따른 CNG기관의 성능특성 연구)

  • 김봉석;이영재;고창조
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.49-57
    • /
    • 1991
  • Natural gas is one of the most promising alternative fuels for automative vehicles, because it has lower exhaust emissions and better fuel economy characteristics than gasoline and can be used in conventional engines with a little modification. In the present study, a conventional gasoline engine was modified to a CNG dedicated engine, which can be operated with CNG( compressed natural gas) only, and a engine bench test was performed at various compression ratios. As a result, it was revealed that the prototype CNG engine can be operated with lower exhaust emissions, better fuel economy and better thermal efficiency, but with a sightly reduced brake horse power, compared to the conventional gasoline engine.

  • PDF

Design of a Cylinder Valve Solenoid for a CNG Vehicle using Electromagnetic Field Analysis (전자기장 해석을 이용한 CNG 차량 용기용 밸브 솔레노이드의 설계)

  • Lee, Hyo-Ryeol;Ahn, Jung-Hwan;Shin, Jin-Oh;Kim, Hwa-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.89-96
    • /
    • 2016
  • Growing concerns regarding environmental pollution have increased the demand for green vehicles. Green vehicles include electric vehicles, compressed natural gas vehicles, fuel cell vehicles, and vehicles running on fuels such as bio diesel or an ethanol blend. CNG vehicles are equipped with a cylinder valve installed in a high-pressure vessel to control the CNG flow. For this purpose, the optimum design of cylinder valve solenoid is necessary to secure at driving a CNG vehicle. In this study, electromagnetic field analysis to ensure the reliable operation of the solenoid was conducted by using a Maxwell V15. The electromagnetic field analysis was performed by magnetostatic technique according to distance between magnetic poles in order to predict the attraction force. Finally, the attraction force was validated through comparison between the Maxwell results and the measurement results. From the results, the error of attraction force was found to be 2.85 N to 6.5 N under the testing conditions.

Exhaust Emissions Characteristics of Bi-fuel CNG/LPG Passenger Cars (CNG/LPG Bi-fuel 승용차의 배출가스 특성)

  • Cho, Chong-Pyo;Lee, Young-Jae;Kim, Gang-Chul;Kwon, Oh-Seuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.142-147
    • /
    • 2011
  • Compressed natural gas (CNG) is well known as one of the cleanest burning alternative fuels. Bi-fuel CNG vehicle can also run on gasoline or another fuel while dedicated natural gas vehicle is designed to run on natural gas only. Recently, increased attention has been focused on bi-fuel CNG/LPG taxi because of good fuel economy of CNG. A number of LPG taxis modified to CNG Bi-fuel vehicles are running in many cities. In this paper, the emissions characteristics of in-use passenger cars running on CNG and LPG were investigated. Chassis dynamometer test was used to measure exhaust emissions from an in-use fleet of 5 cars. Exhaust emissions were collected for CVS-75 driving mode. The test results showed that for CNG fuel mode, CO, $CO_2$ and NMHC emissions decreased to 9%, 12% and 14% respectively, and $CH_4$ and $NO_x$ emissions increased to 317% and 47% respectively.

A improvement performance and test result of traction motor for Bimodal low floor vehicle (바이모달 저상굴절차량용 견인전동기 성능 개선 및 평가)

  • Choi, Yeol-Jun;Park, Yeong-Ho;Kim, Chul-Ho;Choi, Jong-Mook;Bae, Chang-Han;Mok, Jai-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2006-2010
    • /
    • 2008
  • This paper deal with the improvement performance and test result of traction motor for Bimodal low floor vehicles that are CNG(Compressed Natural Gas) hybrid bus. The improvement performance concept of the traction motor is studied in terms of electrical characteristics and mechanical construction. Finally, this paper introduces the result of the traction motor test for low floor vehicles, and mentioned the detail design concept of traction motor.

  • PDF