• Title/Summary/Keyword: compressed and pressurized

Search Result 29, Processing Time 0.023 seconds

Computer Simulation on Insulation Characteristics of Composite Material O-rings (복합소재 O-링 접합계면의 단열특성에 관한 컴퓨터 시뮬레이션)

  • Kim, Chung-Kyun;Kim, Sung-Won;Cho, Seung-Hyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.291-295
    • /
    • 2002
  • O-ring seal is usual component part in various mechanical apparatus for sealing that makes efficient performance of the equipments. The sealing performance of O-ring is affected in environments of the O-rings, like that applied pressure, working temperature, pre-compressed ratio and materials. In this paper, a pressurized, compressed elastomeric bi-polymer O-ring inserted into a rectangular groove is analyzed numerically using the MARC finite element program. The calculated FEM results showed that bi-polymer O-ring that is manufactured by NBR for an inner and FFKM for an outer ring shows a low temperature distribution among various bi-polymer O-ring models. But, the normal contact stress between the flange and upper part of the O-ring is small compared to other bi-polymer model.

  • PDF

Modeling of coupled liquid-gas-solid three-phase processes due to fluid injection

  • Zang, Yong-Ge;Sun, Dong-Mei;Feng, Ping;Stephan, Semprich
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-23
    • /
    • 2017
  • A coupled liquid-gas-solid three-phase model, linking two numerical codes (TOUGH2/EOS3 and $FLAC^{3D}$), was firstly established and validated by simulating an in-situ air flow test in Essen. Then the coupled model was employed to investigate responses of multiphase flow and soil skeleton deformation to compressed air or freshwater injection using the same simulation conditions in an aquifer of Tianjin, China. The simulation results show that with injecting pressurized fluids, the vertical effective stress in some area decreases owing to the pore pressure increasing, an expansion of soil skeleton appears, and land uplift occurs due to support actions from lower deformed soils. After fluids injection stops, soil deformation decreases overall due to injecting fluids dissipating. With the same applied pressure, changes in multiphase flow and geo-mechanical deformation caused by compressed air injection are relatively greater than those by freshwater injection. Furthermore, the expansion of soil skeleton induced by compressed air injection transfers upward and laterally continuously with time, while during and after freshwater injection, this expansion reaches rapidly a quasi-steady state. These differences induced by two fluids injection are mainly because air could spread upward and laterally easily for its lower density and phase state transition appears for compressed air injection.

Evaluation of various large-scale energy storage technologies for flexible operation of existing pressurized water reactors

  • Heo, Jin Young;Park, Jung Hwan;Chae, Yong Jae;Oh, Seung Hwan;Lee, So Young;Lee, Ju Yeon;Gnanapragasam, Nirmal;Lee, Jeong Ik
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2427-2444
    • /
    • 2021
  • The lack of plant-side energy storage analysis to support nuclear power plants (NPP), has setup this research endeavor to understand the characteristics and role of specific storage technologies and the integration to an NPP. The paper provides a qualitative review of a wide range of configurations for integrating the energy storage system (ESS) to an operating NPP with pressurized water reactor (PWR). The role of ESS technologies most suitable for large-scale storage are evaluated, including thermal energy storage, compressed gas energy storage, and liquid air energy storage. The methods of integration to the NPP steam cycle are introduced and categorized as electrical, mechanical, and thermal, with a review on developments in the integration of ESS with an operating PWR. By adopting simplified off-design modeling for the steam turbines and heat exchangers, the results show the performance of the PWR steam cycle changes with respect to steam bypass rate for thermal and mechanical storage integration options. Analysis of the integrated system characteristics of proposed concepts for three different ESS suggests that certain storage technologies could support steady operation of an NPP. After having reviewed what have been accomplished through the years, the research team presents a list of possible future works.

Stability Analysis for Ground Uplift in Underground Storage Caverns for High Pressurized Gas using Hoek-Brown Strength Criterion and Geological Strength Index (GSI) (Hoek-Brown 강도기준식 및 암질강도지수를 이용한 고압 유체 지하저장 공동의 융기에 대한 안정성 평가)

  • Kim, Hyung-Mok
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.289-296
    • /
    • 2014
  • A simple analytical approach for stability assessment of underground storage caverns against ground uplift of overburden rock above the rock caverns for high pressurized fluid such as compressed air energy storage (CAES) and compressed natural gas (CNG) was developed. In the developed approach, we assumed that failure plane of the overburden is straight upward to ground surface, and factor of safety can be calculated from a limit equilibrium analysis in terms of this cylindrical shape failure model. The frictional resisting force on the failure plane was estimated by Hoek-Brown strength criterion which replaces with Mohr-Coulomb criterion such that both intact rock strength and rock mass conditions can be considered in the current approach. We carried out a parametric sensitivity analysis of strength parameters under various rock mass conditions and demonstrated that the factor of safety againt ground uplift was more sensitive to Mohr-Coulomb strength criterion rather than Hoek-Brown criterion.

Comparative Performance Analysis of Small Pressurized Fuel Cell/Gas Turbine Hybrid Systems (소형 가압형 연료전지/가스터빈 하이브리드 시스템의 성능 비교해석)

  • Park, Sung-Ku;You, Byung-June;Kim, Tong-Seop;Sohn, Jeong-L.;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.652-658
    • /
    • 2008
  • Design performances of the fuel cell / gas turbine hybrid power generation systems based on two different fuel cells (PEMFC, SOFC) have been comparatively analyzed. In each system, the fuel cell operates at an elevated pressure corresponding to the compressed air pressure of the gas turbine. Both internally and externally reformed systems were analyzed for the SOFC hybrid system. Component design parameters of 10kW class small systems are assumed. For all hybrid systems, increasing the turbine inlet temperature increases the power portion of the gas turbine. With increasing the turbine inlet temperature, system efficiency decreases in the PEMFC system and the internally reformed SOFC system while that of the externally reformed SOFC system increases slightly. The internally reformed SOFC hybrid system is predicted to exhibit the best system efficiency.

The Effect of Water Compressibility on a Rigid Body Movement in a Water-filled Duct Driven by Compressed Air (압축공기로 움직이는 관 내부 수중 이동물체의 거동에 미치는 물의 압축성 영향)

  • Park, Chan-Wook;Lee, Sung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.345-352
    • /
    • 2008
  • The motion of a projectile initiated by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one. The effects of water compressibility on projectile movements are investigated, comparing results based on the Fluent VOF model where water is treated as an incompressible medium with those from the presently developed VOF scheme. The present model considers compressibility of both air and water. The Fluent results show that the body moves farther and at higher speeds than the present ones. As time proceeds, the relative difference of speed and displacement between the two results drops substantially, after acoustic waves in water traverse and return the full length of the tube several times. To estimate instantaneous accelerations, however, requires implementation of the water compressibility effect as discrepancies between them do not decrease even after several pressure wave cycles.

A Study on B Class Fire Extinguishing Performance of Air Ratio in the Compressed Air Foam System (압축공기포 소화설비의 공기포비에 따른 B급 소화성능 연구)

  • Lee, Jang-Won;Lim, Woo-Sub;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.8-14
    • /
    • 2013
  • This research is to evaluate the fire extinguishing performance at a mixing ratio of pressurized air in the fire extinguishing system of compressed air foam (CAF) which injects compressed air into foam liquid and then discharging. The experimental device is made use of exclusive foam extinguishing facility for compressed air foam that is produces based on Canada National Laboratory and UL 162 standard, apply model of oil fire (B Class) 20 unit in accordance with "Standard of Model Approval and Product Inspection for Fire Extinguishing Agent" to the fire Extinguishing model. Compressed air is injected through the air mixture and study the tendency depending on increasing air foam ratio 1 : 4, 1 : 7, 1 : 10. In addition, the comparison experiments between synthetic surfactants foam and AFFF carry out with it at the air foam ratio 1 : 4. As a result, in the condition of same discharging flow, fire extinguishing effect of AFFF is the fastest at the air foam ratio 1 : 7 and the slowest at 1 : 10. Moreover, the fire extinguishing effect of AFFF in the comparison expeiments between AFFF and synthetic surfactants foam is faster than the other.

Numerical Simulations on the O-ring Extrusion in Automotive Engines (자동차 엔진에서 O-링의 압출거동에 관한 수치적 연구)

  • 이일권;김청균
    • Tribology and Lubricants
    • /
    • v.15 no.4
    • /
    • pp.297-303
    • /
    • 1999
  • O-rings in automotive engines are important components such as a coolant pipe, engine oil circulating lines and fuel injector for sealing that makes efficient performance of the engine. Life cycle of O-rings is effected in environments of the O-ring seal, like that applied pressure, working temperature, precompressed ratio and materials. It is related in extrusion, expansion and fatigue failure of O-rings. In this paper, an pressurized, compressed elastomeric O-ring inserted into a rectangular groove is analysed numerically using the nonlinear finite element method. The calculated FEM results showed that extrusion ratio and contact stress are strongly related to the gap clearance and edge radius of the groove.

Micro Fabrication Process of Powder Compact with Semi-solid Mold

  • Tsumori, Fujio
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.258-259
    • /
    • 2006
  • New powder compaction process, in which a Bingham semi-solid/fluid mold is utilized, is developed to fabricate micro parts. In the present process, a powder material is filled as slurry in a solid wax mold, dried and compressed. The wax is heated during compaction and becomes semi-solid state, which can acts as a pressurized medium for isostatic compaction. Since the compacted micro parts are very fragile, the mold's temperature is controlled to higher than its melting point during unloading, to avoid breakage of the compacts. To demonstrate effectiveness of this process, some micro compacts of alumina are shown as examples.

  • PDF

Analysis of Treatment Efficiency of Cylinder-Shaped Filter for Construction Site Runoff Control (건설현장 탁수제어를 위한 원통형 여과장치의 처리효율 분석)

  • Choi, Jongsoo;Kong, Young-San;Lee, Jung-Min;Bang, Ki-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.532-538
    • /
    • 2014
  • A cylinder-shaped filter was developed to manage the runoff from construction sites. Compressed air was used for back-washing and pore sizes of filter were $23{\mu}m$ and $46{\mu}m$. The turbid water was prepared using sediments in construction sites. The grain size analysis showed that grains smaller than $38{\mu}m$ and larger than $335{\mu}m$ in size constituted 34.4 % and 37.6 %, respectively. Removal efficiency of the filter on turbidity, SS, COD, TN and TP showed 25~37%, 20~40%, 50~55%, 23~27% and 14~20%, respectively, whereas their removal efficiecy by using coagulant PAC showed 77~84%, 70~83%, 53~60%, 27~36%, and 59~75%, respectively. The filtration time was determined to be around 10 to 20 minutes. Back-washing for 10 seconds by pressurized air resulted in a satisfactory regeneration efficiency. According to the aforementioned test results, the cylinder-shaped filter is effective in reducing turbidity and would be suitable for practical application in construction sites and farms.