• Title/Summary/Keyword: compositional change

Search Result 153, Processing Time 0.031 seconds

Cloning and Sequencing of the Gene Involved in Morphological Change of Zoogloea ramigera 115SLR

  • Lee, Sam-Pin;Kim, Tae-Rahk;Sinskey, Anthony-John
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.161-168
    • /
    • 2000
  • Plasmid pLEX3 isolated from the recombinant cosmid library of Zoogloea ramigera 115 was found to be responsible for the restoration of the rugose colony phenotype. To confirm the essential region responsible for the complementation, subclones were constructed from plasmid pLEX3 and transformed into mutant strain Z. ramigera 115SLR. The recombinant plasmids pLEX10 and pLEX11 were shown to complement the slime-forming property of Z. ramigera 115SLR. In a compositional analysis of the exopolysaccharides from Z. ramigera 115, Z. ramigera 115SLR, and Z. ramigera 115SLR harboring plasmid pLEX11, the exopolysaccharides showed a similar composition with glucose, galactose, and side chain groups. The complete nucleotide sequence of the 3.25kb genocim DNA insert in plasmid pLEX11 was determined and its analysis identified two open reading frames which could encode two proteins. The gene products derived form the two open reading frames were confirmed by and in vivo transcription using a T7-RNA polymerase. The ORF1 produced a 30 kDa protein, whereas the ORF2 was found responsible for the complementation of the morphological mutation and produced a 14 kDa protein. An in vivo gene expression of plasmid pTEX10 showed another open reading frame encoding a 50 kDa protein. The gene products form ORF1 and ORF2 are regarded as novel proteins which do not show any homology with other proteins.

  • PDF

Work function engineering on transparent conducting ZnO thin films

  • Heo, Gi-Seok;Hong, Sang-Jin;Park, Jong-Woon;Choi, Bum-Ho;Lee, Jong-Ho;Shin, Dong-Chan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1706-1707
    • /
    • 2007
  • A possibility of work function engineering on ZnO thin film is studied by in-situ and ex-situ doping process. The work function of ZnO thin film decreases with increasing boron and phosphorus doping quantity. But, the work function of Al-doped ZnO (AZO) thin film increases as the boron doping quantity incresess. The range of work function change on ZnO thin films is 3.5 eV to 5.5 eV. This result shows that the work function of ZnO thin film is indeed engineerable by changing materials of dopants and their compositional distribution of surface. We also discuss the possible mechanism of work function engineering on ZnO thin films.

  • PDF

Viscous Flow Behavior of (90-x)SiO2-xNa2O-10RO (x = 15-40) Glasses with Low Sintering Temperature

  • Lee, Hansol;Park, Hyun-A;Kim, Hyeong-Jun;Chung, Woon Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.167-172
    • /
    • 2019
  • Silicate glasses with varying SiO2 and Na2O contents were prepared and their viscous flow property at the elevated temperature was studied. When the glass powders were packed and sintered at 550℃ to examine their feasibility as a low sintering temperature glass frit, contrary to expectations, glasses with lower SiO2 content than 60 mol% showed no vitrification after sintering. High temperature microscopy revealed the viscous flow change of the silicate glasses with varying temperature and duration time and also indicated that the viscous flow was limited at low SiO2 content. X-ray diffraction (XRD) on the sintered samples and Raman spectroscopy were carried out to shed light on the compositional dependency of viscous flow of silicate glasses.

Amorphous-to-Crystalline Phase Transition of (InTe)x(GeTe) Thin Films ((InTe)x(GeTe) 박막의 비정질-결정질 상변화)

  • Song, Ki-Ho;Beak, Seung-Cheol;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.199-205
    • /
    • 2010
  • The crystallization speed (v) of amorphous (InTe)$_x$(GeTe) (x = 0.1, 0.3 and 0.5) films and their thermal, optical and electrical behaviors have been investigated using nano-pulse scanner (wavelength = 658 nm, laser beam diameter < 2 ${\mu}m$), X-ray diffraction (XRD), 4-point probe and UV-vis-IR spectrophotometer. These results were compared with those of $Ge_2Sb_2Te_5$ (GST) film, comprehensively utilized for phase-change random access memory (PRAM). Both v-value and thermal stability of (InTe)$_{0.1}$(GeTe) and (InTe)$_{0.3}$(GeTe) films could be enhanced in comparison with those of the GST. Contrarily, the v-value in the (InTe)$_{0.5}$(GeTe) film was so drastically deteriorated that we could not quantitatively evaluate it. This deterioration is thought because amorphous (InTe)$_{0.5}$(GeTe) film has relatively high reflectance, resulting in too low absorption to cause the crystallization. Conclusively, it could be thought that a proper compositional (InTe)$_x$(GeTe) films (e.g., x < 0.3) may be good candidates with both high crystallization speed and thermal stability for PRAM application.

Studies on the Production of Roughages from Hyun-aspen (Populus alba × P. glandulosa) by Chemical Treatments -Autohydrolysis- (화학적(化學的) 처리(處理)에 의한 현사시나무의 조사료화(粗飼料化) 연구(硏究)(I) -Autohydrolysis-)

  • Kang, Chin-Ha;Paik, Ki-Hyon;Wi, Heub
    • Journal of the Korean Wood Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.15-23
    • /
    • 1990
  • Roughage feeds were produced from Hyun-aspen (Populus alba $\times$ P. glandulosa) by autohydrolysis. The objectives of this work were to find proper conditions for the treatment of Hyun-aspen by analyzing the compositional change and digestibility and to determine the content of sugar and phenol contained in liquor extracted by digestion. The results of this work were as follows: 1. The proper condition for autohydrolysis of Hyun-aspen chips were $160^{\circ}C$ and 30 minutes in an autoclave. The yield of potential feed from original material and digestibility were 91.3% and 38.9% respectively 2. According to cooking conditions the sugar concentration of extracted solution and the recovery rate of sugar were 0.1~2.5%, 0.3~14.6% respectively. The phenol concentration of extracted solution and the recovery rate of phenol were 0.1~0.3, 0.5~1.8% respectively.

  • PDF

Downstream Process for the Production of Yeast Extract Using Brewer's Yeast Cells

  • In Man-Jin;Kim Dong Chung;Chae Hee Jeong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.85-90
    • /
    • 2005
  • A downstream process was developed for the production of yeast extract from brewer's yeast cells. Various downstream processing conditions including clarification, debittering, and the Maillard reaction were considered in the development of the process. This simple and economic clarification process used flocculating agents, specifically calcium chloride ($1\%$). After the clarification step, a Maillard reaction is initiated as a flavor-enhancing step. By investigating the effects of several operation parameters, including the type of sugar added, sugar dosage, glycine addition, and temperature, on the degree of browning (DB), giucose addition and reaction temperature were found to have significant effects on DB. A synthetic adsorption resin (HP20) was used for the debittering process, which induced a compositional change of the hydrophobic amino acids in the yeast hydrolysate, thereby reducing the bitter taste. The overall dry matter yield and protein yield for the entire process, including the downstream process proposed for the production of brewer's yeast extract were 50 and $50\%$, respectively.

Oxygen Deficiency, Hydrogen Doping, and Stress Effects on Metal-Insulator Transition in Single-Crystalline Vanadium Dioxide Nanobeams

  • Hong, Ung-Gi;Jang, Seong-Jin;Park, Jong-Bae;Bae, Tae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.424.1-424.1
    • /
    • 2014
  • Vanadium dioxide (VO2) is a strongly correlated oxide exhibiting a first-order metal-insulator transition (MIT) that is accompanied by a structural phase transition from a low temperature monoclinic phase to a high-temperature rutile phase. VO2 has attracted significant attention because of a variety of possible applications based on its ultrafast MIT. Interestingly, the transition nature of VO2 is significantly affected by stress due to doping and/or interaction with a substrate and/or surface tension as well as defects. Accordingly, there have been considerable efforts to understand the influences of such factors on the phase transition and the fundamental mechanisms behind the MIT behavior. Here, we present the influences of oxygen deficiency, hydrogen doping, and substrate-induced stress on MIT phenomena in single-crystalline VO2 nanobeams. Specifically, the work function and the electrical resistance of the VO2 nanobeams change with the compositional variation due to the oxygen-deficiency-related defects. In addition, the VO2 nanobeams during exposure to hydrogen gas exhibit the reduction of transition temperature and the complex phase inhomogenieties arising from both substrate-induced stress and the formation of the hydrogen doping-induced metallic rutile phase.

  • PDF

Fabrication of the Functional Coatings of a Tubular Solid Oxide Fuel by Plasma Spray Processes. (플라즈마 용사법을 이용한 원통형 고체산화물 연료전지의 요소피막 제조)

  • 주원태;홍상희
    • Journal of Surface Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.333-346
    • /
    • 1997
  • Plasma spray processes for functional coatings of tubular SOFC ( Soild oxide Fuel Cell).consisting of air electrode, oxide electrolyte, an fuel electrode, are optimized by fully saturated fractional factorial testing. Material and electric characteristics of each coating are analtsed by the implementation of SEM and optical microscope for evaluating microstructure and porosity, X-ray diffraction method for investigating compositional change between raw powder and sprayed coating, and Van der Pauw method for measuring electrical conductivity. LSM ($La_{0.65}Sr_{0.35}MnO_3$air electrode and Ni-YSL fuel electrode coatings have porosities of around 23~30% sufficient for effective fuel and oxidant gas supply to electrochemical reaction interfaces and electrical conductivities of around 90 S/cm and 1000 S/cm, respectively, enough for acting as current collecting electrodes. YSZ($ZrO_2-8mol%Y_2O_3$) electrolyte film has a high ionic conductivities of 0.05~0.07 S/cm at $1000^{\circ}C$ in air atmosphere, but appears to be somewhat too porous to reduce the thickness. for enhancing the cell efficiency. A unit tubular SOFC has beem fabricated by the optimized plasma spray processes for each functional coating and the cell. Its electrochemical chracteristics are investigated by measuring voltage-current and power density with variation of operationg temperature, radio of fuel to air gas flowrates, and total gas flowrate of reactants.

  • PDF

The Effect of Processing Variables and Composition on the Nitridation Behavior of Silicon Powder Compact

  • Park, Young-Jo;Lim, Hyung-Woo;Choi, Eugene;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.8 s.291
    • /
    • pp.472-478
    • /
    • 2006
  • The effect of compositional and processing variables on a nitriding reaction of silicon powder compact and subsequent post sintering of RBSN (Reaction-Bonded Silicon Nitride) was investigated. The addition of a nitriding agent enhanced nitridation rate substantially at low temperatures, while the formation of a liquid phase between the nitriding agent and the sintering additives at a high temperature caused a negative catalyst effect resulting in a decreased nitridation rate. A liquid phase formed by solely an additive, however, was found to have no effect on nitridation for the additive amount used in this research. The original site of a decomposing pore former was loosely filled by a reaction product ($Si_3N_4$), which provided a specimen with nitriding gas passage. For SRBSN (Sintered RBSN) specimens of high porosity, only a marginal dimensional change was measured after post sintering. Its engineering implication for near-net shaping ability is discussed.

Grain Boundary Migration and Grain Shape Change Induced by Alloying of $PbZrO_3$ and $PbTiO_3$ in PZT Ceramics (PZT 세라믹스에서 $PbZrO_3$$PbTiO_3$ 첨가에 의한 입계이동과 입자모양 변화)

  • 허태무;김재석;이종봉;이호용;강석중
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.1
    • /
    • pp.102-109
    • /
    • 2000
  • When PbZrO3 (PZ) and PbTiO3 (PT) particles were scattered on polished surfaces of sintered Pb(Zr0.52Ti0.48)O3 (PZT; Zr/Ti=1.08) and then annealed, the PZT grain boundaries migrated. Near the scattered particles, grain boundaries were corrugated and thus the grain shape changed from a normal one to irregular ones. Especially, near the scattered PZ particles, fast grain growth occurred. In the regions swept by moving grain boundaries, the Zr/Tiratio was measured to be about 1.35 for of PZ scattering and about 0.8 for PT scattering, respectively. This result indicates that the grain boundary migration was induced by alloying of Zr and Ti ions in PZT grains, as in usual diffusion induced grain boundary migration(DIGM). A calculation showed that higher coherency strain energy was induced for PT scattering because of higher alloying of Ti than of Zr.

  • PDF