• Title/Summary/Keyword: composite-$Al_2O_3$

Search Result 566, Processing Time 0.025 seconds

Phase Evolution, Thermal Expansion, and Microwave Dielectric Properties of Cordierite-Al2O3 Composite

  • Kim, Shin;Song, Eun-Doe;Hwang, Hae-Jin;Lee, Joo-sung;Yoon, Sang-Ok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.337-341
    • /
    • 2021
  • Phase evolution, thermal and microwave dielectric properties of cordierite-Al2O3 composite were investigated. As the content of Al2O3 increased, mullite, sapphirine, and spinel were formed as secondary phases, implying that cordierite may be decomposed by the reaction with Al2O3. All sintered specimens exhibited dense microstructures. The densification occurred through liquid phase sintering. As the content of Al2O3 increased, the thermal expansion coefficient and the dielectric constant increased, whereas the quality factor decreased. The thermal expansion coefficient, the dielectric constant, and the quality factor of the 90 wt% cordierite 10 wt% Al2O3 composite sintered at 1,425℃ were 2.9×10-6 K-1, 5.1, and 34,844 GHz, respectively.

A study on the Mechanical Properties of $Al_2O_{3(p)}$/LXA Composites by Melt-stirring Method (용탕교반법에 의한 $Al_2O_{3(p)}$/LXA복합재료의 기계적 성질에 관한 연구)

  • 이현규;공창덕
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.65-73
    • /
    • 2000
  • Casting of metal matrix composites is an attractive process since it offers a wide selection of materials and processing conditions. Among the casting methods, melt-stirring technology is much attractive route in industrial application because it is more simple and inexpensive compared to squeeze casting or powder metallurgy. In the present work, effects of particle size, volume fraction of particles and mg addition on mechanical properties and thermal expansion coefficients of $\alpha$ -$Al_2O_{3(p)}$/LXA composites were studied. It is shown that $\alpha$ -$Al_2O_3$ particles formed at the interface of $\alpha$ -$Al_2O_3$ particles and matrix made an important role on mechanical properties. Ultimate tensile strength of most composite materials was not increased. But in the case of 5vol% addition of 16$\mu\textrm{m}$ $\alpha$ -$Al_2O_3$ Particle, Ultimate tensile strength of composite materials with 3wt.% Mg was increased. Volume fraction of reinforcements and mg content were thermal expansion coefficients of composite materials were decreased.

  • PDF

The Fabrication and Sinterability of $Al_2O_3/Cu$ Nanocomposite Powder ($Al_2O_3/Cu$ 나노복합분말의 제조 및 소결 특성)

  • 홍대희;오승탁;김지순;김영도;문인형
    • Journal of Powder Materials
    • /
    • v.6 no.4
    • /
    • pp.301-306
    • /
    • 1999
  • Mechanical properties of oxide based materials could be improved by nanocomposite processing. To investigate optimum route for fabrication of nanocomposite enabling mass production, high energy ball milling and Pulse Electric Current Sintering (PECS) were adopted. By high energy ball milling, the $Al_2O_3$-based composite powder with dispersed Cu grains below 20 nm in diameter was successfully synthesized. The PECS method as a new process for powder densification has merits of improved sinterability and short sintering time at lower temperature than conventional sintering process. The relative densities of the $Al_2O_3$-5vol%Cu composites sintered at $1250^{\circ}C$ and $1300^{\circ}C$ with holding temperature of $900^{\circ}C$ were 95.4% and 95.7% respectively. Microstructures revealed that the composite consisted of the homogeneous and very fine grains of $Al_2O_3$ and Cu with diameters less than 40 nm and 20 nm respectively The composite exhibited enhanced toughness compared with monolithic $Al_2O_3$. The influence of the Cu content upon fracture toughness was discussed in terms of microstructural characteristics.

  • PDF

Dispersion Property of Al2O3 Nanosol Prepared by Various Dispersion Factors and Silane Modification under Non-Aqueous Solvent (비수계 용매하에서 다양한 분산인자 및 실란 표면개질에 의해 제조된 Al2O3 나노졸의 분산 특성)

  • Na, Ho Seong;Park, Min-Gyeong;Lim, Hyung Mi;Kim, Dae Sung
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.733-740
    • /
    • 2016
  • $Al_2O_3$ nanosol dispersed under ethanol or N-Methyl-2-pyrrolidone(NMP) was studied and optimized with various dispersion factors and by utilizing the silane modification method. The two kinds of $Al_2O_3$ powders used were prepared by thermal decomposition method from aluminum ammonium sulfate$(AlNH_4(SO_4)_2)$ while controlling the calcination temperature. $Al_2O_3$ sol was prepared under ethanol solvent by using a batch-type bead mill. The dispersion properties of the $Al_2O_3$ sol have a close relationship to the dispersion factors such as the pH, the amount of acid additive(nitric acid, acetic acid), the milling time, and the size and combination of zirconia beads. Especially, $Al_2O_3$ sol added 4 wt% acetic acid was found to maintain the dispersion stability while its solid concentration increased to 15 wt%, this stability maintenance was the result of the electrostatic and steric repulsion of acetic acid molecules adsorbed on the surface of the $Al_2O_3$ particles. In order to observe the dispersion property of $Al_2O_3$ sol under NMP solvent, $Al_2O_3$ sol dispersed under ethanol solvent was modified and solvent-exchanged with N-Phenyl-(3-aminopropyl)trimethoxy silane(APTMS) through a binary solvent system. Characterization of the $Al_2O_3$ powder and the nanosol was observed by XRD, SEM, ICP, FT-IR, TGA, Particles size analysis, etc.

Poly(ethylene oxide)/AgBF4/Al(NO3)3/Ag2O Composite Membrane for Olefin/Paraffin Separation (올레핀/파라핀 분리를 위한 poly(ethylene oxide)/AgBF4/Al(NO3)3/Ag2O 복합체 분리막)

  • Jeong, Sooyoung;Kang, Sang Wook
    • Membrane Journal
    • /
    • v.27 no.4
    • /
    • pp.313-318
    • /
    • 2017
  • For the separation of olefins/paraffins, $Poly(ethylene oxide)(PEO)/AgBF_4/Al(NO_3)_3/Ag_2O$ composite membranes were prepared. When $Ag_2O$ was introduced, the initial selectivity and permeance of composite membranes were observed to be 13.7 and 21.7 GPU, respectively. The increase in performance compared to the initial performance of $PEO/AgBF_4/Al(NO_3)_3$ membrane (selectivity 13 and permeance 7.5 GPU) was thought to be due to the increase of Ag ion activity due to the addition of $Ag_2O$. However, performance degradation over time was observed, which was thought to be due to the polymer matrix PEO. Since the PEO polymer could not stabilize the $Ag_2O$ particles, the $Ag_2O$ particles becmae aggregated together as the solvent evaporates, and $Ag_2O$ acts as a barrier. As a result, the permeance decreases over time.

Properties of Al2O3-SiCw Composites Fabricated by Three Preparation Methods (제조방법에 따른 Al2O3-SiCw 복합체의 특성)

  • Lee, Dae-Yeop;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.392-398
    • /
    • 2014
  • $Al_2O_3$-SiC composites reinforced with SiC whisker ($SiC_w$) were fabricated using three different methods. In the first, $Al_2O_3-SiC_w$ starting materials were used. In the second, $Al_2O_3-SiC_w$-SiC particles ($SiC_p$) were used, which was intended to enhance the mechanical properties by $SiC_p$ reinforcement. In the third method, reaction-sintering was used with mullite-Al-C-$SiC_w$ starting materials. After hot-pressing at $1750^{\circ}C$ and 30 MPa for 1 h, the composites fabricated using $Al_2O_3-SiC_w$ and $Al_2O_3-SiC_w-SiC_p$ showed strong mechanical properties, by which the effects of reinforcement by $SiC_w$ and $SiC_p$ were confirmed. On the other hand, the mechanical properties of the composite fabricated by reaction-sintering were found to be inferior to those of the other $Al_2O_3$-SiC composites owing to its relatively lower density and the presence of ${\gamma}-Al_2O_3$ and ${\gamma}-Al_{2.67}O_4$. The greatest hardness and $K_{1C}$ were 20.37 GPa for the composite fabricated using $Al_2O_3-SiC_w$, and $4.9MPa{\cdot}m^{1/2}$ using $Al_2O_3-SiC_w-SiC_p$, respectively, which were much improved over those from the monolithic $Al_2O_3$.

Toughening of $Al_2$O$_3$/LaAl$_{11}$O$_{18}$ Composites (Al$_2$O$_3$/LaAl$_{11}$O$_{18}$ 복합재료의 인성증진)

  • 장병국;우상국
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1266-1273
    • /
    • 1998
  • Al2O3/(5~20vol%)LaAl11O18 composites in which the second phase was dispersed with a elongated grain shape were fabricated using Al2O3 and La2O3 composition by hot-pressing. In order investigate the in-fluence of LaAl11O18 on the toughening of LaAl11O18 on the toughening of Al2O3 matrix composites AE(acoustic emission) analysis was con-ducted together with an evaluation of fracture toughness using of SEPB technique. The degree of AE events occurred in composites were more than those in monolithic alumina. The occurrences of AE event increased with increasing the amount of LaAl11O18 phase in the Al2O3/LaAl11O18 composite is two times higher compared to monolithic alu-mina. The main toughening mechanism was attributed to the bridging of LaAl11O18 grains at tip of pro-pagating crack.

  • PDF

Research on the Solution and Properties of Ni-P/n-$Al_2O_3$ Electroless Composite Plating

  • Huang, Yan-bin;Liu, Fei-fei;Zhang, Qi-yong;Ba, Guo-zhao;Liang, Zhi-jie
    • Corrosion Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.257-260
    • /
    • 2007
  • In order to further improve the corrosion resistance and wear resistance of the Ni-P coatings of electroless plating, electroless Ni-P/n-$Al_2O_3$ composite deposits were prepared by adding some nano $Al_2O_3$ Particles in Ni-P plating bath. The bath composition and proproties were studied in this paper. The orthogonal test was applied in order to get the new composite solution, taking the initial stable potential as evaluation standard and considering the elements correlation at the same time. The processing parameters have been optimized by single factor experiment in which the depositing speed was chosen as the evaluation standard. The results showed that the process is stable and the composite Ni-P/n-$Al_2O_3$ deposits werebright and smooth, whose hardness and corrosion resistance are much better than simple Ni-P coatings. Furthermore the surface appearance and structure of the composite Ni-P/n-$Al_2O_3$ coating were investigated by SEM and XRD method. It was proved that the coating surface is typical cystiform cells and its structure is amorphous. All test results ofcomposite coating showed that all various physical coating properties had been improved by adding nano-particles. The hardness of optimal coating is more than 600HV and increases to 1000HV after heat-treating, and its hardness is 20~50% higher than Ni-P coating. The rust points appeared in 200 hour by immersing the coating into the 10%HCl solution and the corrosive speed is $3{\times}10^{-3}mg/(cm^2{\cdot}h)$which was obtained after 300 hour. In the same condition Ni-P coating is $5.6{\times}10^{-3}mg/(cm^2{\cdot}h)$. The salt spray resistance of the layers can exceed 600h with the thickness $20{\mu}m$.