• 제목/요약/키워드: composite walls

Search Result 226, Processing Time 0.026 seconds

Experimental evaluation of back-to-back anchored walls by double-plates anchors

  • Amir, Najafizadeh;AmirAli, Zad
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.599-614
    • /
    • 2022
  • One of the methods of stabilizing retaining walls, embankments, and deep excavations is the implementation of plate anchors (like the Geolock wall anchor systems). Back-to-back Mechanically Stabilized Earth (BBMSE) walls are common stabilized earth structures that can be used for bridge ramps. But so far, the analysis of the interactive behavior of two back-to-back anchored walls (BBAW) by double-plates anchors (constructed closely from each other and subjected to the limited-breadth vertical loading) including interference of their failure and sliding surfaces has not been the subject of comprehensive studies. Indeed, in this compound system, the interaction of sliding wedges of these two back-to-back walls considering the shear failure wedge of the foundation, significantly impresses on the foundation bearing capacity, adjacent walls displacements and deformations, and their stability. In this study, the effect of horizontal distance between two walls (W), breadth of loading plate (B), and position of vertical loading was investigated experimentally. In addition, the comparison of using single and equivalent double-plate anchors was evaluated. The loading plate bearing capacity and displacements, and deformations of BBAW were measured and the results are presented. To evaluate the shape, form, and how the critical failure surfaces of the soil behind the walls and beneath the foundation intersect with one another, the Particle Image Velocimetry (PIV) technique was applied. The experimental tests results showed that in this composite system (two adjacent-loaded BBAW) the effective distance of walls is about W = 2.5*H (H: height of walls) and the foundation effective breadth is about B = H, concerning foundation bearing capacity, walls horizontal displacements and their deformations. For more amounts of W and B, the foundation and walls can be designed and analyzed individually. Besides, in this compound system, the foundation bearing capacity is an exponential function of the System Geometry Variable (SGV) whereas walls displacements are a quadratic function of it. Finally, as an important achievement, doubling the plates of anchors can facilitate using concrete walls, which have limitations in tolerating curvature.

Shear and tensile behaviors of headed stud connectors in double skin composite shear wall

  • Yan, Jia-Bao;Wang, Zhe;Wang, Tao;Wang, Xiao-Ting
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.759-769
    • /
    • 2018
  • This paper studies shear and tensile behaviors of headed stud connectors in double skin composite (DSC) structure. Firstly, 11 push-out tests and 11 tensile tests were performed to investigate the ultimate shear and tensile behaviors of headed stud in DSC shear wall, respectively. The main parameters investigated in this test program were height and layout of headed stud connectors. The test results reported the representative failure modes of headed studs in DSC structures subjected to shear and tension. The shear-slip and tension-elongation behaviors of headed studs in DSC structures were also reported. Influences of different parameters on these shear-slip and tension-elongation behaviors of headed studs were discussed and analyzed. Analytical models were also developed to predict the ultimate shear and tensile resistances of headed stud connectors in DSC shear walls. The developed analytical model incorporated the influence of the dense layout of headed studs in DSC shear walls. The validations of analytical predictions against 22 test results confirmed the accuracy of developed analytical models.

A SEM STUDY ON THE ADAPTATION OF ESTHETIC RESTORATIVE MATERIALS TO TOOTH STRUCTURE IN CLASS V CAVITIES (V급와동에 충전한 심미성 수복재의 치질과의 접합도에 관한 주사전자현미경적 연구)

  • Cho, Young-Gon;Gho, Chang-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.2
    • /
    • pp.413-422
    • /
    • 1993
  • The purpose of this study was to evaluate the adaptation of light cured glass ionomer cement and composite resin using all- etch technique to tooth structure. In this study, class V cavities were prepared on the buccal surfaces of 10 extracted human premolar teeth with cementum margin and teeth were randomly assigned 2 groups of 5 teeth each. The cavities of glass ionomer cement group were filled with the light cured glass ionomer cement(Fuji II LC) and the cavities of composite resin group were filled with the light cured composite resion(P - 50) using all- etch technique with All- Bond 2. The restored teeth were stored in 100 % relative humidity at $37^{\circ}C$ for 48 hours. And then, the roots of the teeth were removed with the tapered fissure bur and the remaining crowns were sectioned occlusogingivally through the center of restorations. Adaptation at tooth - restoration interface were assessed occlusally, gingivally, and axially by scanning electron microscope. The results were as follows : 1. The adaptation to enamel walls of composite resin restorations using All - Bond 2 showed better than glass ionomer restorations. 2. The adaptation to gingival and axial walls of glass ionomer restorations showed better than composite resin restorations using All - Bond 2. 3. In both groups, occlusal margins of restorations showed better adaptation than gingival margins of restorations.

  • PDF

Evaluation of unilateral buckling of steel plates in composite concrete-steel shear walls

  • Shamsedin Hashemi;Samaneh Ramezani
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.129-140
    • /
    • 2023
  • To increase the stiffness and strength of a reinforced concrete shear wall, steel plates are bolted to the sides of the wall. The general behavior of a composite concrete-steel shear wall is dependent on the buckling of the steel plates that should be prevented. In this paper, the unilateral buckling of steel plates of a composite shear wall is studied using the Rayleigh-Ritz method. To model the unilateral buckling of steel plate, the restraining concrete wall is described as an elastic foundation with high stiffness in compression and zero stiffness in tension. To consider the effect of bolt connections on the plate's buckling, a constrained optimization problem is solved by using Lagrange multipliers method. This process is used to obtain the critical elastic local buckling coefficients of unilaterally-restrained steel plates with various numbers of bolts, subjected to pure compression, bending and shear loading, and the interaction between them. Using these results, the spacing between shear bolts in composite steel plate shear walls is estimated and compared with the results of the AISC seismic provisions (2016). The results show that the AISC seismic provisions(2016) are overly conservative in obtaining the spacing between shear bolts.

Strengthening of hollow brick infill walls with expanded steel plates

  • Cumhur, Alper;Altundal, Adil;Aykac, Sabahattin;Aykac, Bengi
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.887-904
    • /
    • 2016
  • An efficient, economical and practical strengthening method for hollow brick infill walls was proposed and investigated in the present study, experimentally and numerically. This method aims at increasing the overall lateral strength and stiffness of the structure by increasing the contribution of the infill walls and providing the non-bearing components of the structure with the capability of absorbing earthquake-induced energy to minimize structural damage during seismic excitations. A total of eleven full-scale infill walls strengthened with expanded mild steel plates were tested under diagonal monotonic loading to simulate the loading condition of the non-bearing walls during an earthquake. The contact surface between the plates and the wall was increased with the help of plaster. Thickness of the plates bonded to both faces of the wall and the spacing of the bolts were adopted as test parameters. The experiments indicated that the plates were able to carry a major portion of the tensile stresses induced by the diagonal loads and provided the walls walls with a considerable confining effect. The composite action attained by the plates and the wall until yielding of the bolts increased the load capacities, rigidities, ductilities and energy-absorption capacities of the walls, considerably.

Experimental and numerical investigation of walls strengthened with fiber plaster

  • Basaran, Hakan;Demir, Ali;Bagci, Muhiddin;Ergun, Sefa
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.189-200
    • /
    • 2015
  • The topic of this study is to investigate behaviors of masonry walls strengthened with reinforced fiber plaster under diagonal tensile loads. Full blend brick $100{\times}50{\times}30mm$ in dimensions were used to make masonry walls with dimensions of $400{\times}400{\times}100mm$. Three different samples were manufactured by plastering masonry walls with traditional style, with 3% polypropylene or with 5% steel fiber. All the samples were tested using ASTM 1391-81 standards. The propagation of damage on samples caused by diagonal tensile load was observed and load-displacement graphs were plotted for each sample. A finite element software (ABAQUS) was used to obtain numerical values for all samples and crack patterns and load-displacement responses were obtained. Experimental and numerical results were compared.

Buckling Analysis of laminated composite Cylindrical shells under Axial Compression (축압축하중을 받는 복합적층원통셸의 좌굴해석)

  • 이종선
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.36-41
    • /
    • 1998
  • The objective of this study is to investigate effects of prebuckling on the buckling of laminated composite cylindrical shells. axial compression is considered for laminated composite cylindrical shells with length to radius ratios. The shell walls are made of a laminate with several symmetric ply orientations. This study was made using finite difference energy method, utilizing the nonlinear bifurcation branch with nonlinear prebuckling displacements. The results are compared to the buckling loads determined when membrane prebuckling displacements are considered.

  • PDF

Buckling of Laminated Composite Cylindrical Shells under Axial Compression (축압추하중을 받는 복합재료원통셸의 좌굴)

  • 원종진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.112-116
    • /
    • 1998
  • The objective of this study is to investigate effects of prebuckling on the buckling of laminated composite cylindrical shells. Axial compression is considered for laminated composite cylindrical shells with length to radius ratios. The shell walls are made of a laminate with several symmetric ply orientations. This study was made using finite difference energy method, utilizing the nonlinear bifurcation branch with nonlinear prebuckling displacements. The results are compared to the buckling loads determined when membrane prebuckling displacements are considered.

  • PDF

Thermal Load Calculations on Stud-Frame Walls by Response Coefficient Method (응답계수(應答係數)를 이용(利用)한 건물벽에서의 열부하(熱負荷) 계산(計算))

  • Hwang, Y.K.;Pak, E.T.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.357-368
    • /
    • 1988
  • An application of thermal response coefficient method for obtaining thermal load on stud-frame walls in a typical house is presented. A set of stud-frame walls is two-dimensional heat conduction transients with composite structure. The ambient temperature on the right-hand face of the stud-frame walls is a typical day-cycle input and the room temperature on the left-hand face is a constant input. The desired output is thermal load at the left-hand face. The time-dependent ambient temperature is approximated by a continuous, piecewise-linear function each having one hour interval. The conduction problem is spatially discretized as 8 computer modelings by finite elements to obtain thermal response coefficients. The discretization and round-off errors can be neglected in the range of adequate number of nodes. A 60-node discretization is recommended as the optimum model among 8 computer modelings. Several sets of response coefficients of the stud-frame walls are generated by which the rate of heat transfer through the walls or some temperature in the walls can be calculated for different input histories.

  • PDF

Seismic performance of composite plate shear walls with variable column flexural stiffness

  • Curkovic, Ivan;Skejic, Davor;Dzeba, Ivica;De Matteis, Gianfranco
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.19-36
    • /
    • 2019
  • Cyclic behaviour of composite (steel-concrete) plate shear walls (CPSW) with variable column flexural stiffness is experimentally and numerically investigated. The investigation included design, fabrication and testing of three pairs of one-bay one-storey CPSW specimens. The reference specimen pair was designed in way that its column flexural stiffness corresponds to the value required by the design codes, while within the other two specimen pairs column flexural stiffness was reduced by 18% and 36%, respectively. Specimens were subjected to quasi-static cyclic tests. Obtained results indicate that column flexural stiffness reduction in CPSW does not have negative impact on the overall behaviour allowing for satisfactory performance for up to 4% storey drift ratio while also enabling inelastic buckling of the infill steel plate. Additionally, in comparison to similar steel plate shear wall (SPSW) specimens, column "pull-in" deformations are less pronounced within CPSW specimens. Therefore, the results indicate that prescribed minimal column flexural stiffness value used for CPSW might be conservative, and can additionally be reduced when compared to the prescribed value for SPSWs. Furthermore, finite element (FE) pushover simulations were conducted using shell and solid elements. Such FE models can adequately simulate cyclic behaviour of CPSW and as such could be further used for numerical parametric analyses. It is necessary to mention that the implemented pushover FE models were not able to adequately reproduce column "pull-in" deformation and that further development of FE simulations is required where cyclic loading of the shear walls needs to be simulated.