• Title/Summary/Keyword: composite wall

Search Result 564, Processing Time 0.032 seconds

Research on hysteretic characteristics of EBIMFCW under different axial compression ratios

  • Li, Sheng-cai;Lin, Qiang
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.461-473
    • /
    • 2022
  • Energy-saving block and invisible multiribbed frame composite wall (EBIMFCW) is an important shear wall, which is composed of energy-saving blocks, steel bars and concrete. This paper conducted seismic performance tests on six 1/2-scale EBIMFCW specimens, analyzed their failure process under horizontal reciprocating load, and studied the effect of axial compression ratio on the wall's hysteresis curve and skeleton curve, ductility, energy dissipation capacity, stiffness degradation, bearing capacity degradation. A formula for calculating the peak bearing capacity of such walls was proposed. Results showed that the EBIMFCW had experienced a long time deformation from cracking to failure and exhibited signs of failure. The three seismic fortification lines of the energy-saving block, internal multiribbed frame, and outer multiribbed frame sequentially played important roles. With the increase in axial compression ratio, the peak bearing capacity and ductility of the wall increased, whereas the initial stiffness decreased. The change in axial compression ratio had a small effect on the energy dissipation capacity of the wall. In the early stage of loading, the influence of axial compression ratio on wall stiffness and strength degradation was unremarkable. In the later stage of loading, the stiffness and strength degradation of walls with high axial compression ratio were low. The displacement ductility coefficients of the wall under vertical pressure were more than 3.0 indicating that this wall type has good deformation ability. The limit values of elastic displacement angle under weak earthquake and elastic-plastic displacement angle under strong earthquake of the EBIMFCW were1/800 and 1/80, respectively.

Earth Pressure on the Braced Wall in the Composite Ground Depending on the Depth and the Joint Dips of the Base Rocks under the Soil Strata (복합지반 굴착 시 기반암의 깊이와 절리경사에 따라 흙막이벽체에 작용하는 토압)

  • Bae, Sang Su;Lee, Sang Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.10
    • /
    • pp.41-53
    • /
    • 2016
  • Stability of the braced earth wall in the composite ground, which is composed of the jointed base rocks and the soil strata depends on the earth pressure acting on it. In most cases, the earth pressure is calculated by the empirical method, in which base rocks are considered as a soil strata with the shear strength parameters of base rocks. In this case the effect of the joint dips of the jointed base rocks is ignored. Therefore, the calculated earth pressure is smaller than the actual earth pressure. In this study, the magnitude and the distribution of the earth pressure acting on the braced wall in the composite ground depending on the joint dips of the base rocks and the ratio of soil strata and base rocks were experimentally studied. Two dimensional large-scale model tests were conducted in a large scale test facility (height 3.0 m, length 3.0 m and width 0.5 m) by installing 10 supports in a scale of 1/14.5. The test ground was presumed with the base rock ratio of the composite ground of 65%:35% and 50%:50% and with the joint dips for each base rock layer, $0^{\circ}$, $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$, respectively. And then finite element analyses were performed in the same condition. As results, the earth pressure on the braced wall increased as the base rock layer's joint dips became larger. And earth pressure at the rock layer increased as the rock rate became larger. The largest earth pressure was measured when the base rock rate was 50% (R50) and the rock layer's joint dips was $60^{\circ}$. Based on these results, a formular for the calculation of the earth pressure in the composite ground could be suggested. Distribution of earth pressure was idealized in a quadrangular form, in which the magnitude and the position of peak earth pressure depended on the rock ratio and the joint dips.

Influence of Strain-Hardening Cement Composite's Tensile Properties on the Seismic Performance of Infill Walls (변형경화형 시멘트 복합체의 인장성능에 따른 끼움벽의 내진성능)

  • Cha, Jun-Ho;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.3-14
    • /
    • 2012
  • This paper describes experimental results on the seismic performance of SHCC (strain-hardening cement composite) infill wall for improving damage tolerance capacity of non-ductile frame. To investigate the effect of tensile strain capacity and cracking behavior of SHCC materials on the shear behavior of SHCC infill wall, three infill walls were fabricated and tested under cyclic loading. The test parameter in this study is a type of cement composites; concrete and SHCCs. The two types of SHCC materials were prepared for infill walls. In order to induce crack damages into the mid-span of the infill wall, each infill wall had two 100-mm-deep-notches on both sides. Test results indicated that SHCC infill walls showed superior crack control capacities and much larger drift ratios at the peak loads than RC (reinforced concrete) infill wall, as expected. In particular, due to the bridging actions of the reinforcing fibers, SHCC matrix used in this study would delay the stiffness degradation of infill wall after the first inclined cracking. Moreover, from the damage classes based on the cracks' maximum width in the infill walls, it was observed that PIW-SHD specimen possessed nearly threefold seismic capacities compared to PIW-SLD specimen. Also, from the results on the strain of diagonal reinforcements, it can be concluded that the SHCC matrix would resist a part of tensile stresses transferred along steel rebar in the infill wall.

A Study on the Loft in Korean Traditional Houses - Focused on the Chun-Buk Province - (전통주택의 다락에 관한 연구 - 전북지방을 중심으로 -)

  • 최인호
    • Journal of the Korean housing association
    • /
    • v.8 no.2
    • /
    • pp.1-15
    • /
    • 1997
  • This study is purpose to analyze and adjust structure and composition methodology for Loft of korean traditional houses and than studying correlation about housing plan, according to middle-story structure like Loft form housing architecture. The Loft is composited to level by condition of location, using a rise of stair by expanding of span by function. We can divide to condition of location flatland and slant. In the flatland case, Loft is so heating that the kitchen floor make a lowly and in the slant case, Loft is composited a part of wing using height attitude of floor when the house build type and ㅁ type. Through this study. the Loft is various form of this structural forming then is affect the house facade. The composite of wall is come with the existence of Loft and the wall divided by the lintel and wall line.

  • PDF

Performance Requirement of Cast-in-place Concrete with Sandwich Insulation (타설형 콘크리트 중단열 벽체의 요구성능 분석)

  • Park, Jun-Ho;Yu, Jung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.10-11
    • /
    • 2014
  • Energy load of building affected by insulation performance of building's exterior. and insulation system can be classify interior insulation, exterior insulation, sandwich insulation according to install place of insulation. but within interior insulation system, corner wall and the cross outer wall-slab insulation part may occur thermal bridges. And then, within exterior insulation system is more superior insulation performance than interior insulation, but it has difficult to apply, easily broken at high building because of strong wind load. And also difficult to maintenance exterior insulation system. So, in this study, to found requirement performance of cast-in-place sandwich insulation system that is superior insulation performance and easy construction and maintenance. requirement performance of cast-in-place sandwich insulation system is 1) To avoid thermal bridges in the insulation performance, 2) Both sides concrete wall can be composite action in the structural performance. Because of this study, can develops cast-in-place sandwich insulation system and this insulation system contribute to improve insulation performance of apartment-house and high building.

  • PDF

Nonlinear finite element modeling of steel-sheathed cold-formed steel shear walls

  • Borzoo, Shahin;Ghaderi, Seyed Rasoul Mir;Mohebi, Saeed;Rahimzadeh, Ali
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.79-89
    • /
    • 2016
  • Cold formed steel shear panel is one of the main components to bearing lateral load in low and mid-rise cold formed steel structures. This paper uses finite element analysis to evaluate the stiffness, strength and failure mode at cold formed steel shear panels whit steel sheathing and nonlinear connections that are under monotonic loading. Two finite element models based on two experimental model whit different failure modes is constructed and verified. It includes analytical studies that investigate the effects of studs and steel sheathing thickness changes, fasteners spacing at panel edges, one or two sides steel sheathing and height-width ratio of wall on the lateral load capacity. Dominant failure modes include buckling of steel sheet, local buckling in boundary studs and sheet unzipping in the bottom half of the wall.

A study on out-of-plane strengthening of masonry-infilled wall (조적채움벽의 면외보강에 관한 연구)

  • Jang, Hye-Sook;Eun, Hee-Chang
    • Journal of Industrial Technology
    • /
    • v.41 no.1
    • /
    • pp.7-13
    • /
    • 2021
  • Fiber-reinforced polymer reinforcement or polyurea reinforcement techniques are applied to strengthen unreinforced masonry walls (UMWs). The out-of-plane reinforcing effect of sprayed glass fiber-reinforced polyurea (GFRPU), which is a composite elastomer made of polyurea and milled glass fibers on UMW, is experimentally verified. The out-of-plane strengths and ductile behaviors based on various coating shapes are compared in this study. An empirical formula to describe the degree of reinforcement on the out-of-plane strength of the UMW is derived based on the experimental results. It is reported that the peak load-carrying capacity, ductility, and energy absorption capacity gradually improve with an increase in the strengthening degree or area. Compared with the existing masonry wall reinforcement method, the GFRPU technique is a construction method that can help improve the safety performance along with ease of construction and economic efficiency.

Effect of Ni-Ti shape memory alloy on ductility and response modification factor of SPSW systems

  • Atefeh Khosravikhor;Majid Gholhaki;Omid Rezaifar;Ghasem Pachideh
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.353-365
    • /
    • 2023
  • Shape memory alloys (SMAs) have emerged as a novel functional material that is being increasingly applied in diverse fields including medical, aeronautical and structural engineering to be used in the active, passive and semi-active structural control devices. This paper is mainly aimed at evaluating the ductility and response modification factor of the steel plate shear wall (SPSW) frames with and without the Ni-Ti shape memory alloys. To this end, different configurations were utilized, in which the walls were used in the first, third, middle, and all stories. The models were numerically analyzed using OpenSees Software. The obtained results indicate that improving the shape memory properties of alloys can greatly enhance the ductility and response modification factor. Furthermore, the model whose first and third stories are equipped with the SMA shear wall was found to be 290% more ductile, with a greater response modification factor compared to the unequipped frame.

A Study of the Sol-Air Temperature for the Calculation of Insulation in Cryogenic Storage Tank (저온용 저장탱크의 보온계산을 위한 Sol-Air 온도에 관한 연구)

  • Son, Byung-Jin;Maeng, Joo-Sung;Hong, Sung-Min
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.2
    • /
    • pp.98-107
    • /
    • 1985
  • In this thesis, the Sol-Air temperature distribution for the side-wall of a cylindrical cryogenic storage tank made of nonhomogenious composite layer was studied, in order to calculate the thermal load by Newton's cooling law, when the solar radiation was applied upon the side wall. In the analysis, the atmospheric slab was assumed to be horizontal and infinitely large, and the Sol -Air temperature, which was found by the Net- Radiation method considering the longwave radiation wi th surroundings, was used for boundary condition. Energy equation and boundary conditions were normalized by the defined reference- temperature, and solved. The solutions were developed by the Fourier cosine series. Then, the Sol-Air temperature distribution for the side-wall of LNG storage tank was calculated.

  • PDF

Seismic performance evaluation of steel moment frames with self-centering energy-dissipating coupled wall panels

  • Lu Sui;Hanheng Wu;Menglong Tao;Zhichao Jia;Tianhua Zhou
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.663-677
    • /
    • 2023
  • The self-centering energy-dissipating coupled wall panels (SECWs) possess a dual capacity of resiliency and energy dissipation. Used in steel frames, the SECWs can localize the damage of structures and reduce residual drifts. Based on OpenSEES, the nonlinear models were established and validated by experimental results. The seismic design procedure of steel frame with SECW structures (SF-SECW) was proposed in accordance with four-level seismic fortification objectives. Nonlinear time-history response analyses were carried out to validate the reasonability of seismic design procedure for 6-story and 12-story structures. Results show that the inter-story drifts of designed structures are less than drift limits. According to incremental dynamic analyses (IDA), the fragility curves of mentioned-above structure models under different limit states were obtained. The results indicate that designed structures have good seismic performance and meet the seismic fortification objectives.