• Title/Summary/Keyword: composite wall

Search Result 564, Processing Time 0.022 seconds

Hysteretic performance of a novel composite wall panel consisted of a light-steel frame and aerated concrete blocks

  • Wang, Xiaoping;Li, Fan;Wan, Liangdong;Li, Tao
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.861-871
    • /
    • 2021
  • This study aims at investigating the hysteretic performance of a novel composite wall panel fabricated by infilling aerated concrete blocks into a novel light-steel frame used for low-rise residential buildings. The novel light-steel frame is consisted of two thin-wall rectangular hollow section columns and a truss-beam assembled using patented U-shape connectors. Two bare light-steel frames and two composite wall panels have been tested to failure under horizontal cyclic loading. Hysteretic curves, lateral resistance and stiffness of four specimens have been investigated and analyzed. Based on the testing results, it is found that the masonry infill can significantly increase the lateral resistance and stiffness of the novel light-steel frame, about 2.3~3 and 21.2~31.5 times, respectively. Failure mode of the light-steel frame is local yielding of the column. For the composite wall panel, firstly, masonry infill is crushed, subsequently, local yielding may occur at the column if loading continues. Hysteretic curve of the composite wall panel obtained is not plump, implying a poor energy dissipation capacity. However, the light-steel frame of the composite wall panel can dissipate more energy after the masonry infill is crushed. Therefore, the composite wall panel has a much higher energy dissipation capacity compared to the bare light-steel frame.

Analysis and Design on the Flexural Behavior of Composite Basement Wall Through Nonlinear Sectional Analysis (비선형 단면해석을 통한 합성지하벽의 휨 거동 분석 및 설계)

  • Seo, Soo-yeon;Kim, Hyeon-woo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.2
    • /
    • pp.145-153
    • /
    • 2020
  • The purpose of this study is to investigate the effects of composition of underground structural wall and H-pile in soil cement. The results of previous experimental studies are re-analyzed and the nonlinear cross-sectional analyses of composite basement walls are performed to verify their nonlinear flexural behavior. Based on the study, it is explained how the gap deformation between H-Pile and RC wall should be considered in the design of flexure of composite underground walls. The nonlinear cross-sectional analysis shows that the load-displacement curves of composite basement wall specimens exhibiting flexural behavior exist between the results of the analysis of the complete and non-composite cases. When predicting the behavior of the composite basement wall by nonlinear cross-sectional analysis, the flexural behavior of the composite basement wall could be suitably predicted by considering the reduction of the composite ratio due to tensile stress acting on shear connectors.

Effect of creep and shrinkage in a class of composite frame - shear wall systems

  • Sharma, R.K.;Maru, Savita;Nagpal, A.K.
    • Steel and Composite Structures
    • /
    • v.3 no.5
    • /
    • pp.333-348
    • /
    • 2003
  • The behaviour of composite frame - shear wall systems with regard to creep and shrinkage with high beam stiffness has been largely unattended until recently since no procedure has been available. Recently an accurate procedure, termed the Consistent Procedure (CP), has been developed which is applicable for low as well as for high beam stiffness. In this paper, CP is adapted for a class of composite frame - shear wall systems comprising of steel columns and R.C. shear walls. Studies are reported for the composite systems with high as well as low beam stiffness. It is shown that considerable load redistribution occurs between the R.C. shear wall and the steel columns and additional moments occur in beams. The magnitude of the load redistribution and the additional moment in the beams depend on the stiffness of the beams. It is also shown that the effect of creep and shrinkage are greater for the composite frame - shear wall system than for the equivalent R.C. frame - shear wall system.

A numerical study on the seismic behavior of a composite shear wall

  • Naseri, Reza;Behfarnia, Kiachehr
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.279-289
    • /
    • 2018
  • Shear walls are one of the important structural elements for bearing loads imposed on buildings due to winds and earthquakes. Composite shear walls with high lateral resistance, and high energy dissipation capacity are considered as a lateral load system in such buildings. In this paper, a composite shear wall consisting of steel faceplates, infill concrete and tie bars which tied steel faceplates together, and concrete filled steel tubular (CFST) as boundary columns, was modeled numerically. Test results were compared with the existing experimental results in order to validate the proposed numerical model. Then, the effects of some parameters on the behavior of the composite shear wall were studied; so, the diameter and spacing of tie bars, thickness and compressive strength of infill concrete, thickness of steel faceplates, and the effect of strengthening the bottom region of the wall were considered. The seismic behavior of the modeled composite shear wall was evaluated in terms of stiffness, ductility, lateral strength, and energy dissipation capacity. The results of the study showed that the diameter of tie bars had a trivial effect on the performance of the composite shear wall, but increasing the tie bars spacing decreased ductility. Studying the effect of infill concrete thickness, concrete compressive strength, and thickness of steel faceplates also showed that the main role of infill concrete was to prevent buckling of steel faceplates. Also, by strengthening the bottom region of the wall, as long as the strengthened part did not provide a support performance for the upper part, the behavior of the composite shear wall was improved; otherwise, ductility of the wall could be reduced severely.

Study on Bending and Shear Strength Setting of Full-scale Model Additional Walls for Additional Wall Test Bed Combined with PHC-W Pile Retaining Wall (PHC-W말뚝 흙막이와 결합된 지하증설벽체 테스트베드 구축을 위한 실대형 지하증설벽체의 휨강도 및 전단강도 설정 연구)

  • Woo, Jong Youl;Yoo, Choong Geon;Kim, Sung Su;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.7-17
    • /
    • 2018
  • Test bed additional wall combined with PHC-W pile retaining wall has been constructed. To determine the dimensions of test bed additional wall, bending and shear tests of full scale core members of additional wall were tested. Basement additional walls utilizing PHC-W pile retaining wall, which were developed by modifying the cross-section of PHC piles, were classified into the composite additional wall and the non-composite additional wall. Their tests were conducted to obtain bending strength and shear strength of basement additional walls ultilizing PHC-W pile retaining wall. Since bending strengths and shear strengths of the composite additional wall and the non-composite additional wall were similar, it could be confirmed that the non-composite additional wall could be applied instead of the composite additional wall. Full-scale model additional wall was 200 mm thick, thus the thickness of additional wall combined with PHC-W pile retaining wall could be reduced by 100~200 mm.

Flexural performance of composite sandwich wall panels with foamed concrete

  • Lei Li;Wei Huang;Zhengyi Kong;Li Zhang;Youde Wang;Quang-Viet Vu
    • Steel and Composite Structures
    • /
    • v.52 no.4
    • /
    • pp.391-403
    • /
    • 2024
  • The flexural behavior of composite sandwich wall panels with different thicknesses, numbers of holes, and hole forms, and arrangement form of longitudinal steel bar (uniform type and concealed-beam type) are investigated. A total of twelve composite sandwich wall panels are prepared, utilizing modified polystyrene particles mixed with foam concrete for the flexural performance test. The failure pattern of the composite sandwich wall panels is influenced by the extruded polystyrene panel (XPS) panel thickness and the reinforcement ratio in combination, resulting in both flexural and shear failure modes. Increasing the XPS panel thickness causes the specimens to transition from flexural failure to shear failure. An increase in the reinforcement ratio leads to the transition from flexural failure to shear failure. The hole form on the XPS panel and the steel bar arrangement form affect the loading behavior of the specimens. Plum-arrangement hole form specimens exhibit lower steel bar strain and deflection compared to linear-arrangement hole form specimens. Additionally, specimens with concealed beam-type steel bar display lower steel bar strain and deflection than uniform-type steel bar specimens. However, the hole form and steel bar arrangement form have a limited impact on the ultimate load. Theoretical formulas for cracking load are provided for both fully composite and non-composite states. When compared to the experimental values, it is observed that the cracking load of the specimens with XPS panels closely matches the calculations for the non-composite state. An accurate prediction model for the ultimate load of fully composite wall panels is developed. These findings offer valuable insights into the behavior of composite sandwich wall panels and provide a basis for predicting their performance under various design factors and conditions.

A Study on the Development of Samsung Composite Shear Wall System (삼성의 벽식 구조 복합화 공법)

  • Park, Joon-Sung;Kim, Yeon-Kyeong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.2
    • /
    • pp.175-180
    • /
    • 2002
  • "Samsung Composite Shear Wall System" has its basis on "Samung Able System". "Samsung Able System" has some problems not only in the connection structure but also in waterproofing and soundproofing. We developed "Samsung Composite Shear Wall System" in order to solve these matters and expand PC system. "Samsung Composite Shear Wall System" is the compromise and complement of all the merits of full PC, half PC and in-situ concrete system.

ADAPTATION OF COMPOSITE RESIN TO DENTINAL WALL USING DENTIN BONDING AGENTS (수종 상아질 접착제의 상아질과의 접합양상에 관한 주사 전자현미경적 연구)

  • Oh, Won-Mann;Yang, Kyu-Ho;Okuda, Reiichi;Sasazaki, Hiromi;Komatsu, Masashi
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.641-654
    • /
    • 1994
  • This study was executed to evaluate adaptability of dentin bonding agents to dentinal wall with measuring contraction gap on interface between cavity wall and composite resin by SEM study. 6 kinds of dentin bonding agents were investigated for this study : Gluma, Super Bond C & B, All bond 2, Scotchbond multipurpose, Scotchbond 2 and Clearfil photo bond. 30 of fresh extracted teeth were randomly selected and divided into 6 groups with each 5. The round shaped cavities with 3mm dia. and 1.5mm depth were prepared on cementoenamel junction of buccal surface of teeth. Dentin bonding agents were applied to cavity wall and then the composite resin was filled in the cavity. Specimens were sectioned longitudinally on buccal surface. Sectioned aspects of specimens were impressioned with rubber base materials and finally precise replica were made of epoxy resin poured in negative impression. Contraction gaps were examined on interface between cavity wall and composite resin under condition of 200 and 2000 magnification of SEM. The results were as follows. 1. There were no gap on interface between enamel and composite resin in all specimens, but gaps were mainly exhibited on apical side of lateral wall of dentin of cavity. 2. In Gluma, 2 cases of 5 specimens exhibited excellent adaptation to the cavity wall, indicating no gaps on interface between cavity wall and composite resin. The other specimens showed gaps with range of $0{\sim}15{\mu}m$ width. 3. In Super Bond C & B, gaps with range of $0{\sim}10{\mu}m$ width were mainly exhibited on apical side of lateral wall of dentin of cavity. 4. In All bond 2, all specimens showed the most exellent adaptation to cavity wall when compared to the other materials, indicating no gap interface between cavity wall and composite resin. 5. In Scotchbond multipurpose, gaps with range of $0{\sim}10{\mu}m$ width were locally located on cavity wall. 6. In Scotchbond 2, all specimens showed great amount of gap with range of $5{\sim}25{\mu}m$, indicating the worst adaptation to cavity wall compared to the other materials. 7. In Clearfil photo bond, 2 case of 5 specimens exhibited exellent adaptation to cavity wall, indicating no gap. the other specimens showed gap with range of $0{\sim}15{\mu}m$ width on inferface between cavity wall and composite resin.

  • PDF

Work Time of Basement Composite Wall Form Assembly by Work Time Analysis (작업분석을 통한 합벽거푸집 구성 요소별 작업소요시간에 관한 연구)

  • Heo, Kyoung-Moo;Kim, Myoung-Hyun;Kim, Tae-Hui;Kim, Jae-Yeob;Kim, Gwang-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.9-13
    • /
    • 2009
  • Recently, construction in downtown is often done closely at the adjacent building. In this case, underground construction need to Basement Composite Wall(BCW) construction. However, generally, during the construction process of BCW form works have many problems that are narrow working space and inefficient time consuming. Despite of these problems, there was no quantitative research for the work time of BCM assembly. Therefore, in this study, work time of CBW form assembly in underground construction is identified by the work analysis. The results of this study reveal that buttress work of basement form take lots of time in the entire work process of Basement Composite Wall form assembly.

  • PDF

Dynamic reliability of structures: the example of multi-grid composite walls

  • Liu, Pei;Yaoa, Qian-Feng
    • Structural Engineering and Mechanics
    • /
    • v.36 no.4
    • /
    • pp.463-479
    • /
    • 2010
  • Based on damage accumulation of multi-grid composite walls, a method of dynamic reliability estimations is proposed. The multi-grid composite wall is composed of edge frame beam, edge frame columns, grid beams, grid columns and filling blocks. The equations including stiffness, shear forces at filling blocks cracking and multi-grid composite walls yielding, ultimate displacement, and damage index are obtained through tests of 13 multi-grid composite wall specimens. Employing these equations in reliability calculations, procedures of dynamic reliability estimations based on damage accumulation of multi-grid composite walls subjected to random earthquake excitations are proposed. Finally the proposed method is applied to the typical composite wall specimen subjected to random earthquake excitations which can be specified by a finite number of input random variables. The dynamic reliability estimates, when filling blocks crack under earthquakes corresponding to 63% exceedance in 50 years and when the composite wall reach limit state under earthquakes corresponding to 2-3% exceedance in 50 years, are obtained using the proposed method by taking damage indexes as thresholds. The results from the proposed method which show good agreement with those from Monte-Carlo simulations demonstrate the proposed method is effective.