• Title/Summary/Keyword: composite stiffened panel

Search Result 36, Processing Time 0.019 seconds

Postbuckling Failure Characteristics of Composite Stiffened Panels (복합재 보강패널의 좌굴 후 파손 특성)

  • Kim, Gwang-Su;Lee, Yeong-Mu;Jang, Yeong-Sun;Yu, Jae-Seok;An, Jae-Mo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.37-43
    • /
    • 2006
  • Six types of hat stiffened composite panels were manufactured with different bonding methods and stiffener section shapes and compression testing of these panels were performed. The panels showed similar behaviors in bucking and postbuckling region before a skin-stiffener separation failure occurred. Although all the separation failures occurred at the same locations of stiffener flanges close by skin buckling crests, the separation loads, separation failure growth behaviors and final collapse loads were different with respect to bonding methods and stiffener section shapes. As the separation failure initiated early and propagated larger area, collapse loads and structural efficiency of the panels decreased.

Optimal Design of Panel with Trapezoidal Type Stiffeners (사다리꼴 보강재를 활용한 패널의 최적설계)

  • 이종선
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.71-76
    • /
    • 2003
  • Optimal design of panel with trapezoidal type stiffeners was studied using linear and nonlinear deformation theories. Also analysis method was using closed-form analysis and finite difference energy methods, respectively. Various bucking load factors are obatined for stiffened laminated composite panel with trapezoidal type stiffeners and various aspect ratios, which are made from Carbon/Epoxy USN 125 prepreg and are simply-supported on four edges under uniaxial compression. Optimal design analyses are carried out by the nonlinear search optimizer, ADS.

A study on the acoustic emission characteristics of laminated composite structures (복합재료 적층 구조물의 음향방출 특성 연구)

  • 박재성;김광수;이호성
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.16-22
    • /
    • 2003
  • This paper studied the AE(acoustic emission) characteristics of the laminated composite structures. The composite stiffened panels under the compressive loading emitted various AE signals when they buckled or changed the buckling modes. In addition, the failure initiated and propagation generated a lot of complex signals. From the continuous signal generation. we identified when the failures initiated and whether they propagated or not. The single lap joint of laminated plates under tensional load also generated AE signals when bonding region failed. The first failure occurrence and its propagation are monitored by generated AE signals. The characteristics of AE signals used in this analysis are cumulative hits, hit distribution, peak frequency of generated AE waveform and amplitude of signals. The analysis of AE signals shows that continuous increment of cumulative hits can be regarded as damage propagation and three dominant peak frequencies can correspond to typical failure modes in the laminated composites.

Delamination Detection at a Bolt Hole Using a Built-in Piezoelectric Active Sensor Array (배열 압전 능동 센서를 이용한 볼트 구멍의 층간분리 탐지)

  • Park, Chan-Yik;Kim, Min-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.6
    • /
    • pp.550-557
    • /
    • 2008
  • Delamination damage at a bolt hole in a composite stiffened panel was detected using a built-in piezoelectric active sensor array. Various signal processing techniques were used to detect an invisible small scale delamination around a fastener hole due to localized transverse loading. A built-in piezoelectric sensor array was used to generate diagnostic signals and to measure response signals. Then, the response signals were processed to extract damage-sensitive features. Damage indexes were calculated to estimate the severity and location of the damage from the features.

Static and Fatigue Characteristics of Urethane Foam Cored Sandwich Structures (우레탄 폼 코아 샌드위치 구조물의 정적 및 피로 특성)

  • 김재훈;이영신;박병준;김덕회;김영기
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.74-82
    • /
    • 1999
  • The static and fatigue characteristics of polyurethane foam cored sandwich structures are investigated. Three types of the specimens with the glass fabric faces and the polyurethane foam core are used; non-stitched. stitched, and stiffened sandwich specimen. Especially additional structural reinforcements with the twisted polyester and glass fiber for thickness direction are made to stitched sandwich structure panel to minimize the delamination of structure which is stitched the upper and lower faces through the core and the resin is impregnated Into stitched fiber with the characteristics of low viscosity of resin at resin flow temperature and cured together with during the curing process. Bending strength of stitched specimen which is 50 mm $50{\times}50{\;}mm$ pitched is improved by 50 % as com-pared with non-stitched specimen and stiffened specimen is improved 10 times more than non-stitched structure. After fatigue testing of $10^6$cycles by 20% of ultimate load under monotonic load, the bending fatigue strength of non-stitched specimen is decreased by 27% of monotonic bending strength, 39% for stitched structure and 20% for stiffened specimen. To verify the aging effect of polyurethane form core, Ultrasonic C-scanning equipment is used to detect the damage of skin laminate alone after fatigue test. From results of UT C-scan images, there is no defect that can be damaged occurred during fatigue test. It is concluded that the decrease of bending strength for foam cored sandwich specimen is caused by the decrease of stiffness due to the aging of polyurethane foam core during fatigue cycles.

  • PDF

Impact Monitoring of Composite Structures using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 복합재 구조물의 충격 모니터링 기법 연구)

  • Jang, Byeong-Wook;Park, Sang-Oh;Lee, Yeon-Gwan;Kim, Chun-Gon;Park, Chan-Yik;Lee, Bong-Wan
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.24-30
    • /
    • 2011
  • Low-velocity impact can cause various damages which are mostly hidden inside the laminates or occur in the opposite side. Thus, these damages cannot be easily detected by visual inspection or conventional NDT systems. And if they occurred between the scheduled NDT periods, the possibilities of extensive damages or structural failure can be higher. Due to these reasons, the built-in NDT systems such as real-time impact monitoring system are required in the near future. In this paper, we studied the impact monitoring system consist of impact location detection and damage assessment techniques for composite flat and stiffened panel. In order to acquire the impact-induced acoustic signals, four multiplexed FBG sensors and high-speed FBG interrogator were used. And for development of the impact and damage occurrence detections, the neural networks and wavelet transforms were adopted. Finally, these algorithms were embodied using MATLAB and LabVIEW software for the user-friendly interface.