• Title/Summary/Keyword: composite steel plate concrete

Search Result 304, Processing Time 0.025 seconds

An Experimental Comparison Study on the Strength and Earthquake-resistant Capacity of Reinforced Concrete Columns Retrofitted with Fiber-Steel Composite Plate (복합플레이트로 보강된 RC 기둥의 내진성능에 대한 연구)

  • Park Tae Man;Park Weon Su;Park Seong Min;Yoon Jeong Bae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.724-729
    • /
    • 2004
  • The purpose of this study is to investigate the strength and ductility improvement of columns retrofitted with Fiber-Steel Composite Plate, compared with Steel Plate, and Carbon Fiber Sheet. Test specimens strengthened with 3 different materials--- carbon fiber sheet, steel plate and fiber-steel composite plate --- were tested under cyclic lateral force and a constant axial load equal to $20\%$ of the column's axial load capacity. The hypothetical equivalent value of the strengthening among three materials is introduced to evaluate.

  • PDF

Buckling analysis of steel plates in composite structures with novel shape function

  • Qin, Ying;Luo, Ke-Rong;Yan, Xin
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.405-413
    • /
    • 2020
  • Current study on the buckling analysis of steel plate in composite structures normally focuses on applying finite element method to derive the buckling stress. However, it is time consuming, computationally complicated and tedious for general use in design by civil engineers. Therefore, in this study an analytical study is conducted to predict the buckling behavior of steel plates in composite structures. Hand calculation method was proposed based on energy principle. Novel buckling shapes with biquadratic functions along both loaded and unloaded direction were proposed to satisfy the boundary condition. Explicit solutions for predicting the critical local buckling stress of steel plate is obtained based on the Rayleigh-Ritz approach. The obtained results are compared with both experimental and numerical data. Good agreement has been achieved. Furthermore, the influences of key factors such as aspect ratio, width to thickness ratio, and elastic restraint stiffness on the local buckling performance are comprehensively discussed.

Bolted end plate connections for steel reinforced concrete composite structures

  • Li, Xian;Wu, Yuntian;Mao, Weifeng;Xiao, Yan;Anderson, J.C.;Guo, Yurong
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.291-306
    • /
    • 2006
  • In order to improve the constructability and meanwhile ensure excellent seismic behavior, several innovative composite connection details were conceived and studied by the authors. This paper reports experimental results and observations on seismic behavior of steel beam bolted to reinforced concrete column connections (bolted RCS or BRCS). The proposed composite connection details involve post tensioning the end plates of the steel beams to the reinforced concrete or precast concrete columns using high-strength steel rods. A rational design procedure was proposed to assure a ductile behavior of the composite structure. Strut-and-tie model analysis indicates that a bolted composite connection has a favorable stress transfer mechanism. The excellent capacity and behavior were then validated through five full-scale beam to column connection model tests.

Structural Characteristics of Steel-Concrete Composite Plate Girder with Arch-Type Web Stiffener (아치형 복부판 보강재가 설치된 플레이트거더 강합성교의 구조적 거동특성)

  • Woo, Sang-Pyuk;Yoo, Jong-Ho;Lee, Hong-Kyu;Won, Yong-Seok;Kim, Sun-Hee;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • In this paper, we present the result of analytical investigation pertaining to the structural behavior of steel-concrete composite plate girder with arch-type web stiffener. In the arch-type web stiffener located in the compression side of web, infill concrete is cast to strengthen the arch-type stiffener and also to exert resisting force against compression force. This type of composite steel-concrete plate girder bridge is built and is in service. To understand the behavior thoroughly, analytical parametric study was conducted by using the finite element method. As a result it was found that the effect of arch-type stiffener with infill concrete is considerable for the design of such type composite girder bridge.

The suggestion of Steel Plate-Concrete Composite Beam Shape with Bolts (볼트 체결형 강판-콘크리트 합성보의 형상 제안)

  • Cho, Tae-Gu;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.305-314
    • /
    • 2018
  • The steel-plate concrete composite beam is composed of a steel plate, concrete and a shear connector to combine the two inhomogeneous materials. In general, the steel plate is assembled by welding an existing composite beam. In this study, a new steel-plate concrete composite (SPCC) beam was developed to reduce the size of the shear connector and improve its workability. The SPCC beam was composed of folded steel plates and concrete, without any shear connector. The folded steel plate was assembled with high strength bolts instead of welding. To improve the workability in field construction, a hat-shaped cap was attached in the junction with the slab. Monotonic two-point load testing was conducted under displacement control mode. The flexural strength of the SPCC beam specimen was calculated to be 76% of that of the complete composite beam by using the plastic stress distribution method and strain compatibility method. The cap acted as the stud and accessory. The synthesis rate could be increased by controlling the gap of the cap, and the bending performance could be evaluated by using the strain fitting method considering the synthesis rate of the SPCC beam.

A Study on Strength of shear Connectors in Composite Beams of Steel and Lightweight Concrete Slabs with Deck Plate (덱크플레이트를 사용한 경량콘크리트 슬래브와 철골보의 합성보에서 쉬어코넥터의 내력에 관한 연구)

  • 김종식;박성무
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.293-298
    • /
    • 1995
  • The strength of shear connectors embedded in lightweight concrete slab with deck plate is influenced by various factors of deck plate, shear conncetor and concrete. Generally, it is reported that the strength of shear connector in lightweight concrete decreases in comparison with that in normal concrete. So this paper is to use compressive strength of lilghtweight concrete, width-height ratio of deck plate, and cross sectional area of shear conncetor as variables, to evaluate the strength of shear conncetors in composite beam of steel and lilghtweight concrete slabs with deck plate, and then to suggest the reasonable strength equation by comparing the push-out test results with establixhed strength formula. As the result of 24 specimens test, in case of lightweight concrete slab with deck plate, it has showed that in the same strength, the strength of shear connector decreased about 10~20% in comparison with that in normal concrete. In spite of lightweight concrete, the test results were closely approached the established strength formula of shear connector using Fisher's reduction coefficient.

  • PDF

Behavior of optimized prestressed concrete composite box-girders with corrugated steel webs

  • Lu, Yanqiu;Ji, Lun
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.183-196
    • /
    • 2018
  • The traditional prestressed concrete composite box-girders with corrugated steel webs have several drawbacks such as large deflection and potential local buckling. In this study, two methods were investigated to optimize and improve the prestressed concrete composite box-girders with corrugated steel webs. The first method was to replace the concrete bottom slab with a steel plate and the second method was to support the concrete bottom slab on the steel flanges. The behavior of the prestressed concrete composite box-girders with corrugated steel webs with either method was studied by experiments on three specimens. The test results showed that behavior of the optimized and upgraded prestressed concrete composite box-girders with corrugated steel webs, including ultimate bearing capacity, flexural stiffness, and crack resistance, is greatly improved. In addition, the influence of different shear connectors, including perfobond leisten (PBL) and stud shear connectors, on the behavior of prestressed concrete composite box-girders with corrugated steel webs was studied. The results showed that PBL shear connectors can greatly improve the ultimate bearing capacity, flexural stiffness and crack resistance property of the prestressed concrete composite box-girders with corrugated steel webs. However, for the efficiency of prestressing introduced into the girder, the PBL shear connectors do not perform as well as the stud shear connectors.

Compressive behavior of profiled double skin composite wall

  • Qin, Ying;Li, Yong-Wei;Su, Yu-Sen;Lan, Xu-Zhao;Wu, Yuan-De;Wang, Xiang-Yu
    • Steel and Composite Structures
    • /
    • v.30 no.5
    • /
    • pp.405-416
    • /
    • 2019
  • Profiled composite slab has been widely used in civil engineering due to its structural merits. The extension of this concept to the bearing wall forms the profiled composite wall, which consists of two external profiled steel plates and infill concrete. This paper investigates the structural behavior of this type of wall under axial compression. A series of compression tests on profiled composite walls consisting of varied types of profiled steel plate and edge confinement have been carried out. The test results are evaluated in terms of failure modes, load-axial displacement curves, strength index, ductility ratio, and load-strain response. It is found that the type of profiled steel plate has influence on the axial capacity and strength index, while edge confinement affects the failure mode and ductility. The test data are compared with the predictions by modern codes such as AISC 360, BS EN 1994-1-1, and CECS 159. It shows that BS EN 1994-1-1 and CECS 159 significantly overestimate the actual compressive capacity of profiled composite walls, while AISC 360 offers reasonable predictions. A method is then proposed, which takes into account the local buckling of profiled steel plates and the reduction in the concrete resistance due to profiling. The predictions show good correlation with the test results.

A Study on the Structural Behavior of the Composite Slabs using the Metal Form Deck Plate (일반거푸집용 데크플레이트를 이용한 합성슬래브의 구조적 거동에 관한 연구)

  • KWON, Yong Keun;KANG, Do An;CHOI, Sung Mo;EOM, Chul Hwan;CHOI, Oan Chul;MOON, Tae Sup;KIM, Kyu Suk;KIM, Duck Jae;KIM, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.67-78
    • /
    • 1996
  • This paper provides the results of a study on the structural behavior of the composite slabs using the metal form deck plate. Cold-formed steel deck sections are used in many composite floor slab applications wherein the steel deck serves not only as the form for the concrete during construction but also as the principal tensile reinforcement for the bottom fiber of the composite slab. A total of 16 specimens are tested to clarify the composite action between the concrete and metal deck plate and to find the method to increase the composite effect, whether or not non-slip bars are used. The test results are summarized for the shear-bond capacities, deformation capacities, and failure modes for the specimens.

  • PDF

Strengthening of steel-concrete composite beams with composite slab

  • Subhani, Mahbube;Kabir, Muhammad Ikramul;Al-Amer, Riyadh
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.91-105
    • /
    • 2020
  • Steel-concrete composite beam with profiled steel sheet has gained its popularity in the last two decades. Due to the ageing of these structures, retrofitting in terms of flexural strength is necessary to ensure that the aged structures can carry the increased traffic load throughout their design life. The steel ribs, which presented in the profiled steel deck, limit the use of shear connectors. This leads to a poor degree of composite action between the concrete slab and steel beam compared to the solid slab situation. As a result, the shear connectors that connects the slab and beam will be subjected to higher shear stress which may also require strengthening to increase the load carrying capacity of an existing composite structure. While most of the available studies focus on the strengthening of longitudinal shear and flexural strength separately, the present work investigates the effect of both flexural and longitudinal shear strengthening of steel-concrete composite beam with composite slab in terms of failure modes, ultimate load carrying capacity, ductility, end-slip, strain profile and interface differential strain. The flexural strengthening was conducted using carbon fibre reinforced polymer (CFRP) or steel plate on the soffit of the steel I-beam, while longitudinal shear capacity was enhanced using post-installed high strength bolts. Moreover, a combination of both the longitudinal shear and flexural strengthening techniques was also implemented (hybrid strengthening). It is concluded that hybrid strengthening improved the ultimate load carrying capacity and reduce slip and interface differential strain that lead to improved composite action. However, hybrid strengthening resulted in brittle failure mode that decreased ductility of the beam.