• 제목/요약/키워드: composite segment

Search Result 66, Processing Time 0.018 seconds

Evaluation of Structural Performance of Precast Modular Pier Cap (프리캐스트 모듈러 피어캡의 구조성능 평가)

  • Kim, Dong Wook;Shim, Chang Su
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.55-63
    • /
    • 2015
  • Prefabrication technologies are making bridge construction safer and less disruptive to the environment and traveling public, making bridge designs more constructible and, improving the quality and durability by shifting site work to a more controllable environment. Modular bridge substructures with concrete-filled steel tube (CFT) piers and composite pier caps were suggested to realize accelerated bridge construction. The precast segmental pier cap consists of a composite pier table and precast prestressed segments on the table. The pier table has embedded steel section to mitigate stress concentration at the connection by small tubes. Each bridge pier has four or six CFT columns which connect to the pier cap. Shear strength of the pier cap was obtained by extending vertical reinforcing bars from the table to the precast segment. Transverse prestressing was introduced to control tensile stresses by service loadings. Structural performance of the proposed modular system was evaluated by static tests. Design requirements of the composite pier cap were satisfied by continuous reinforcing bars and prestressing tendons. Standardized modular substructures can be effectively utilized for the fast replacement or construction of bridges.

Interconnection of Dispersed Generation Systems considering Load Unbalance and Load Model in Composite Distribution Systems (부하불평형 및 부하모형을 고려한 복합배전계통의 분산형전원의 연계 방안)

  • 이유정;김규호;이상근;유석구
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.5
    • /
    • pp.266-274
    • /
    • 2004
  • This paper presents a scheme for the interconnection of dispersed generator systems(DGs) based on load .unbalance and load model in composite distribution systems. Groups of each individual load model consist of residential, industrial, commercial, official and agricultural load. The unbalance is involved with many single-phase line segment. . Voltage profile improvement and system loss minimization by installation of DGs depend greatly on how they are placed and operated in the distribution systems. So, DGs can reduce distribution real power losses and replace large-scale generators if they are placed appropriately in the distribution systems. The main idea of solving fuzzy goal programming is to transform the original objective function and constraints into the equivalent multi-objectives functions with fuzzy sets to evaluate their imprecise nature for the criterion of power loss minimization, the number or total capacity of DGs and the bus voltage deviation, and then solve the problem using genetic algorithm. The method proposed is applied to IEEE 13 bus and 34 bus test systems to demonstrate its effectiveness.

Thermal and mechanical properties of C/SiC composites fabricated by liquid silicon infiltration with nitric acid surface-treated carbon fibers

  • Choi, Jae Hyung;Kim, Seyoung;Kim, Soo-hyun;Han, In-sub;Seong, Young-hoon;Bang, Hyung Joon
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.48-53
    • /
    • 2019
  • Carbon fiber reinforced SiC composites (C/SiC) have high-temperature stability and excellent thermal shock resistance, and are currently being applied in extreme environments, for example, as aerospace propulsion parts or in high-performance brake systems. However, their low thermal conductivity, compared to metallic materials, are an obstacle to energy efficiency improvements via utilization of regenerative cooling systems. In order to solve this problem, the present study investigated the bonding strength between carbon fiber and matrix material within ceramic matrix composite (CMC) materials, demonstrating the relation between the microstructure and bonding, and showing that the mechanical properties and thermal conductivity may be improved by treatment of the carbon fibers. When fiber surface was treated with a nitric acid solution, the observed segment crack areas within the subsequently generated CMC increased from 6 to 10%; moreover, it was possible to enhance the thermal conductivity from 10.5 to 14 W/m·K, via the same approach. However, fiber surface treatment tends to cause mechanical damage of the final composite material by fiber etching.

Finite Element Analysis of Ultra High Performance Fiber Reinforced Concrete 50M Composite Box Girder (초고강도 섬유보강 콘크리트 50M 합성 박스거더의 유한요소해석)

  • Makhbal, Tsas-Orgilmaa;Kim, Do-Hyun;Han, Sang-Mook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.100-107
    • /
    • 2018
  • The material and geometrical nonlinear finite elment analysis of UHPFRC 50M composite box girder was carried out. Constitute law in tension and compressive region of UHPFRC and HPC were modeled based on specimen test. The accuracy of nonlinear FEM analysis was verified by the experimental result of UHPFRC 50M composite girder. The UHPFRC 50M segmental composite box girder which has 1.5% steel fiber of volume fraction, 135MPa compressive strength and 18MPa tensile strength was tested. The post-tensioned UHPFRC composite girder consisted of three segment UHPFRC U-girder and High Strength Concrete reinforced slab. The parts of UHPFRC girder were modeled by 8nodes hexahedron elements and reinforcement bars and tendons were built by 2nodes linear elements by Midas FEA software. The constitutive laws of concrete materials were selected Multi-linear model both of tension and compression function under total strain crack model, which was included in classifying of smeared crack model. The nonlinearity of reinforcement elements and tendon was simulated by Von Mises criteria. The nonlinear static analysis was applied by incremental-iteration method with convergence criteria of Newton-Raphson. The validation of numerical analysis was verified by comparison with experimental result and numerical analysis result of load-deflection response, neutral axis coordinate change, and cracking pattern of girder. The load-deflection response was fitted very well with comparison to the experimental result. The finite element analysis is seen to satisfactorily predict flexural behavioral responses of post-tensioned, reinforced UHPFRC composite box girder.

Water Lubricated Guide Bearing with Self-aligning Segments

  • Oguma, Tadashi;Nakagawa, Naritoshi;Mikami, Makoto;Thantrong, Long;Kizaki, Yasumi;Takimoto, Fumio
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.49-55
    • /
    • 2013
  • Water lubricated guide bearing was newly released and has been applied to actual hydro turbines with vertical shaft. As a result, they can have not only high bearing performance but environmental advantages in meeting the demand for reducing river pollution by oil leakage from oil lubricated guide bearing. The PTFE composite guide bearing was tested by experimental equipment operated under conditions similar to those of actual hydro turbines. Circumferential and axial tilting bearing segments help to improve the bearing performance and efficiency due to low friction loss in the bearing system. Furthermore, bearing cooling systems could be eliminated and maintenance periods could be extended, thus the initial investment and operating costs of the hydroelectric power plant are reduced.

Constructing $G^1$ Quadratic B$\acute{e}$zier Curves with Arbitrary Endpoint Tangent Vectors

  • Gu, He-Jin;Yong, Jun-Hai;Paul, Jean-Claude;Cheng, Fuhua (Frank)
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.55-60
    • /
    • 2010
  • Quadratic B$\acute{e}$zier curves are important geometric entities in many applications. However, it was often ignored by the literature the fact that a single segment of a quadratic B$\acute{e}$zier curve may fail to fit arbitrary endpoint unit tangent vectors. The purpose of this paper is to provide a solution to this problem, i.e., constructing $G^1$ quadratic B$\acute{e}$zier curves satisfying given endpoint (positions and arbitrary unit tangent vectors) conditions. Examples are given to illustrate the new solution and to perform comparison between the $G^1$ quadratic B$\acute{e}$zier cures and other curve schemes such as the composite geometric Hermite curves and the biarcs.

Static stability analysis of graphene origami-reinforced nanocomposite toroidal shells with various auxetic cores

  • Farzad Ebrahimi;Mohammadhossein Goudarzfallahi;Ali Alinia Ziazi
    • Advances in nano research
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • In this paper, stability analysis of sandwich toroidal shell segments (TSSs) with carbon nanotube (CNT)-reinforced face sheets featuring various types of auxetic cores, surrounded by elastic foundations under radial pressure is presented. Two distinct types of auxetic structures are considered for the core, including re-entrant auxetic structure and graphene origami (GOri)-enabled auxetic structure. The nonlinear stability equilibrium equations of the longitudinally shallow shells are formulated using the von Karman shell theory, in conjunction with Stein and McElman approximation while considering Winkler-Pasternak's elastic foundation to simulate the interaction between the shell and elastic foundation. The Galerkin method is employed to derive the nonlinear stability responses of the shells. The numerical investigations show the influences of various types of auxetic-core layers, CNT-reinforced face sheets, as well as elastic foundation on the stability of sandwich shells.

Development and testing of cored moment resisting stub column dampers

  • Hsiao, Po-Chien;Lin, Kun-Sian;Liao, Wei-Chieh;Zhu, Limeng;Zhang, Chunwei
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.107-122
    • /
    • 2020
  • Moment resisting stub columns (MRSCs) have increasingly adopted in special moment-resisting frame (SMF) systems in steel building structures, especially in Asian countries. The MRSCs typically provide a lower deformation capacity compared to shear-panel stub columns, a limited post-yield stiffness, and severe strength degradation as adopting slender webs. A new MRSC design with cored configuration, consisting of a core-segment and two side-segments using different steel grades, has been proposed in the study to improve the demerits mentioned above. Several full-scale components of the cored MRSC were experimentally investigated focusing on the hysteretic performance of plastic hinges at the ends. The effects of the depths of the core-segment and the adopted reduced column section details on the hysteretic behavior of the components were examined. The measured hysteretic responses verified that the cored MRSC enabled to provide early yielding, great ductility and energy dissipation, enhanced post-yield stiffness and limited strength degradation due to local buckling of flanges. A parametric study upon the dimensions of the cored MRSC was then conducted using numerical discrete model validated by the measured responses. Finally, a set of model equations were established based on the results of the parametric analysis to accurately estimate strength backbone curves of the cored MRSCs under increasing-amplitude cyclic loadings.

Structural health rating (SHR)-oriented 3D multi-scale finite element modeling and analysis of Stonecutters Bridge

  • Li, X.F.;Ni, Y.Q.;Wong, K.Y.;Chan, K.W.Y.
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.99-117
    • /
    • 2015
  • The Stonecutters Bridge (SCB) in Hong Kong is the third-longest cable-stayed bridge in the world with a main span stretching 1,018 m between two 298 m high single-leg tapering composite towers. A Wind and Structural Health Monitoring System (WASHMS) is being implemented on SCB by the Highways Department of The Hong Kong SAR Government, and the SCB-WASHMS is composed of more than 1,300 sensors in 15 types. In order to establish a linkage between structural health monitoring and maintenance management, a Structural Health Rating System (SHRS) with relevant rating tools and indices is devised. On the basis of a 3D space frame finite element model (FEM) of SCB and model updating, this paper presents the development of an SHR-oriented 3D multi-scale FEM for the purpose of load-resistance analysis and damage evaluation in structural element level, including modeling, refinement and validation of the multi-scale FEM. The refined 3D structural segments at deck and towers are established in critical segment positions corresponding to maximum cable forces. The components in the critical segment region are modeled as a full 3D FEM and fitted into the 3D space frame FEM. The boundary conditions between beam and shell elements are performed conforming to equivalent stiffness, effective mass and compatibility of deformation. The 3D multi-scale FEM is verified by the in-situ measured dynamic characteristics and static response. A good agreement between the FEM and measurement results indicates that the 3D multi-scale FEM is precise and efficient for WASHMS and SHRS of SCB. In addition, stress distribution and concentration of the critical segments in the 3D multi-scale FEM under temperature loads, static wind loads and equivalent seismic loads are investigated. Stress concentration elements under equivalent seismic loads exist in the anchor zone in steel/concrete beam and the anchor plate edge in steel anchor box of the towers.

The First Case Study of TBM Pre-Excavation Type 2-Arch Tunnel in Korea (국내 최초 TBM선굴진 2-Arch터널 설계사례 연구)

  • Hyung-Ryul Kim;Sang-Jun Jung;Jun-Ho Kang
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.255-264
    • /
    • 2023
  • As the demand for urban underground space increases recently, urban tunnel planning is actively progressing. In the urban area, a underground station is planned in consideration of the living environment of residents, and 2-arch tunnel is applied for the stability of existing structures and reduction of environmental damage. However, since the depth of weak rock mass is deeply distributed in the urban area due to severe weathering, careful planning is required to secure tunnel stability. In addition, if TBM mechanical excavation is applied as the main tunnel excavation method considering the composite ground in urban area, the construction connectivity with the 2-arch tunnel of the NATM concept may be deteriorated. In this study, the design case of applying TBM pre-excavation type 2-arch tunnel for the first time in Korea was mainly described. The main considerations for the segment design of TBM pre-excavation type 2-arch tunnel were explained for side tunnels. Also, a stability analysis was conducted to verify the effectiveness and adequacy of the TBM pre-excavation type 2-arch tunnel.