• 제목/요약/키워드: composite joints

검색결과 468건 처리시간 0.026초

Behavior of composite CFST beam-concrete column joints

  • Kim, Seung-Eock;Choi, Ji-Hun;Pham, Thai-Hoan;Truong, Viet-Hung;Kong, Zhengyi;Duong, Nguyen-The;Vu, Quang-Viet
    • Steel and Composite Structures
    • /
    • 제37권1호
    • /
    • pp.75-90
    • /
    • 2020
  • This paper introduces a new composite joint, which is the composite CFST beam- concrete column joint, and it is more convenient for transportation and erection than conventionally welded joints. The main components of this joint include steel H-beams welded with CFST beams, reinforced concrete columns, and reinforced concrete slabs. The steel H-beams and CFST beams are connected with a concrete slab using shear connectors to ensure composite action between them. An experimental investigation was conducted to evaluate the proposed composite joint performance. A three-dimensional (3D) finite element (FE) model was developed and analyzed for this joint using the ABAQUS/explicit. The FE model accuracy was validated by comparing its results with the relevant test results. Additionally, the parameters that consisted of the steel box beam thickness, concrete compressive strength, steel yield strength, and reinforcement ratio in the concrete slab were considered to investigate their influence on the proposed joint performance.

일방향 복합재료 single-lap 접합 조인트의 파괴 특성 (Fracture Characteristics Unidirectional Composite Single-Lap Bonded Joints)

  • 김광수;유재석;장영순;이영무
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.232-236
    • /
    • 2004
  • The fracture characteristics of unidirectional composite single-lap bonded joints were investigated experimentally and numerically. The effects of bonding method, surface roughness, bondline thickness and the existence of fillet on the failure characteristics and strength of bonded single-lap joints were evaluated experimentally. The failure process, failure mode and the behavior of load-displacement curve was apparently different according to bonding method. The failure load of the specimen co-cured without adhesive was definitely superior to other types of specimens but the specimens co-cured with adhesive film had a less strength than secondary bonded specimens. In the secondary bonded specimens, the lower value of surface roughness and existence of fillet improved the strength of specimens. The strain energy release rates calculated by geometric nonlinear finite element analyses and Virtual Crack Closure Technique for the secondary bonded specimens considering the three types of initial cracks - comer crack, edge crack and delamination crack - were consistent with the test results.

  • PDF

복부 트러스 복합교량 접합구조의 실험적 연구 (Evaluation of the Joint Design in Composite Truss Bridges)

  • 심창수;박재식;김광수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.325-328
    • /
    • 2006
  • Joint structures of composite truss bridges can have the same details for the connection between diagonal members and upper concrete slab as the connection between diagonal members and lower concrete slab. Adequate connection details should be decided according to design codes, constructibility, and economical evaluation. It is necessary to clarify the design check items and load transferring mechanism because combined external loads on composite truss bridges are concentrated at the joints. Joints with gusset plates and stud connectors are applied and complicated joint details may arise some problems in construction. This paper deals with experimental evaluation of the joints in composite truss bridges and proper design provisions were investigated to enhance the details. Push-out test specimens with group studs were fabricated and the effects of grouping and bent studs were studied.

  • PDF

점진적 파손해석을 이용한 탄소섬유강화 복합재료 볼트 조인트의 파손거동 예측 (Prediction of Failure Behavior for Carbon Fiber Reinforced Composite Bolted Joints using Progressive Failure Analysis)

  • 윤동현;김상덕;김재훈;도영대
    • Composites Research
    • /
    • 제34권2호
    • /
    • pp.101-107
    • /
    • 2021
  • 복합재료를 활용하여 설계되는 구조물은 각 부품들의 조립, 체결부를 갖게 된다. 이러한 연결 또는 조인트는 구조에서 잠재적으로 취약 부분이 될 수 있다. 복합재료 볼트 조인트의 파손모드는 구조 안전성을 위해 베어링 파손모드로 설계된다. 베어링 파손모드로 파괴되는 복합재료 볼트 조인트의 하중-변위 관계는 초기 파손 발생 후 비선형 거동을 보이며, 점진적인 파손을 보인다. 이러한 비선형적이고 점진적인 복합재료 볼트 조인트의 파손거동을 정확히 예측하기 위해 본 연구에서는 기존의 파손해석 모델에서 전단 손상변수 계산 과정에 수정을 수행하였다. 수정된 파손해석 모델을 이용하여 복합재료 볼트 조인트의 베어링 응력-베어링 변형률 결과를 예측하였으며, 기존 수정되지 않은 해석모델과 비교를 통해 수정된 모델의 유효성을 입증하였다.

복합재-알루미늄 단일겹침 하이브리드 체결부 강도 특성 실험 연구 (An Experimental Study on the Strength of Composite-to-Aluminum Hybrid Single-Lap Joints)

  • 김중진;성명수;김홍주;차봉근;권진회;최진호
    • 한국항공우주학회지
    • /
    • 제36권9호
    • /
    • pp.841-850
    • /
    • 2008
  • 본 연구에서는 탄소 복합재와 알루미늄 2024-T3 단일겹침 체결부에 대해, 체결방법을 접착, 리벳, 리벳/접착 하이브리드의 세 가지로 변화시키면서 체결방법에 따른 파손하중과 파손모드를 실험을 통해 연구하였다. 세 가지 체결방법에 대해 각각 겹침길이 3가지와 적층순서 2가지, 총 82개의 시편을 제작하였다. 접착제는 FM73m, 리벳은 NAS9308-4-03을 사용하였다. 접착 체결과 하이브리드 체결에서는 겹침길이가 커짐에 따라 파손하중이 증가하였고, 리벳 체결에서는 겹침길이에 따른 파손하중 변화가 나타나지 않았다. 단순 접착 및 리벳 체결부에서는 적층순서에 따른 일관된 경향을 발견하기 어려운 반면, 하이브리드 체결부에서는 인접층의 적층각 차이가 작은 적층판을 사용한 체결부의 파손하중이 높게 나타났다. 접착 체결과 하이브리드 체결의 주된 파손모드는 층간분리이고 리벳 체결은 국부적 베어링 파손을 동반한 리벳 파손으로 나타났다.

동시경화 강철-복합재료 원형 단일 겹치기 조인트의 최적설계 (Optimum Design of Co-cured Steel-Composite Tubular Single Lap Joints)

  • 조덕현;이대길
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1203-1214
    • /
    • 2000
  • In this paper, a failure model for co-cured steel-composite tubular single lap joints has been proposed incorporating the nonlinear mechanical behavior of steel adherends and different failure mode s such as steel adherend failure and composite adherend failure. The characteristics of the co-cured steel-composite tubular single lap joint were investigated with respect to the test temperature, the stacking sequence of composite adherend, the thickness ratio of steel adherend to composite adherend, and the scarf ratio of steel adherend. Thus, the optimum design method for the co-cured steel-composite tubular single lap joint was suggested.

Experimental and analytical performance evaluation of steel beam to concrete-encased composite column with unsymmetrical steel section joints

  • Xiao, Yunfeng;Zeng, Lei;Cui, Zhenkun;Jin, Siqian;Chen, Yiguang
    • Steel and Composite Structures
    • /
    • 제23권1호
    • /
    • pp.17-29
    • /
    • 2017
  • The seismic performance of steel beam to concrete-encased composite column with unsymmetrical steel section joints is investigated and reported within this paper. Experimental and analytical evaluation were conducted on a total of 8 specimens with T-shaped and L-shaped steel section under lateral cyclic loading and axial compression. The test parameters included concrete strength, stirrup ratio and axial compression ratio. The response of the specimens was presented in terms of their hysterisis loop behavior, stress distribution, joint shear strength, and performance degradation. The experiment indicated good structural behavior and good seismic performance. In addition, a three-dimensional nonlinear finite-element analysis simulating was conducted to simulate their seismic behaviors. The finite-element analysis incorporated both bond-slip relationship and crack interface interaction between steel and concrete. The results were also compared with the test data, and the analytical prediction of joint shear strength was satisfactory for both joints with T-shaped and L-shaped steel section columns. The steel beam to concrete-encased composite column with unsymmetrical steel section joints can develop stable hysteretic response and large energy absorption capacity by providing enough stirrups and decreased spacing of transverse ties in column.

Experimental study on cyclically-damaged steel-concrete composite joints subjected to fire

  • Ye, Zhongnan;Jiang, Shouchao;Heidarpour, Amin;Li, Yingchao;Li, Guoqiang
    • Steel and Composite Structures
    • /
    • 제30권4호
    • /
    • pp.351-364
    • /
    • 2019
  • Earthquake and fire are both severe disasters for building structures. Since earthquake-induced damage will weaken the structure and reduce its fire endurance, it is important to investigate the behavior of structure subjected to post-earthquake fire. In this paper, steel-concrete composite beam-to-column joints were tested under fire with pre-damage caused by cyclic loads. Beforehand, three control specimens with no pre-damage were tested to capture the static, cyclic and fire-resistant performance of intact joints. Experimental data including strain, deflection and temperature recorded at several points are presented and analyzed to quantify the influence of cyclic damage on fire resistance. It is indicated that the fire endurance of damaged joints decreased with the increase of damage level, mainly due to faster heating-up rate after cyclic damage. However, cracks induced by cyclic loading in concrete are found to mitigate the concrete spalling at elevated temperatures. Moreover, the relationship between fire resistance and damage degree is revealed from experimental results, which can be applied in fire safety design and is worthwhile for further research.

Probabilistic analysis of a partially-restrained steel-concrete composite frame

  • Amadio, C.
    • Steel and Composite Structures
    • /
    • 제8권1호
    • /
    • pp.35-52
    • /
    • 2008
  • The paper investigates the seismic performance of a Partially-Restrained (PR) steel-concrete composite frame using the probabilistic approach. The analysed frame was tested at the ELSA laboratory of the Joint Research Centre of Ispra (Italy), while the representative beam-to-column composite connections were tested at the Universities of Pisa, Milan and Trento (Italy). The component modelling of both interior and exterior composite joints is described first, including the experimental-numerical validation. The Latin Hypercube method has been used to draw the probabilistic distribution curves of joints, and then the whole PR composite frame has been analysed. Pushover and incremental dynamic analyses have been carried out using the non-linear FE code SAP2000 version 9.1. The fragility and performance curves of the PR composite frame have been determined for four damage limit states.

Behaviour of steel joints under fire loading

  • da Silva, Luis Simoes;Santiago, Aldina;Real, Paulo Vila;Moore, David
    • Steel and Composite Structures
    • /
    • 제5권6호
    • /
    • pp.485-513
    • /
    • 2005
  • This paper presents a state-of-the-art on the behaviour of steel joints under fire loading and some recent developments in this field, currently being carried out by the authors. Firstly, a review of the experimental research work on steel joints is presented, subdivided into isolated member tests, sub-structure tests and tests on complete building structures. Special emphasis is placed on the seventh Cardington test, carried out by the authors within a collaborative research project led by the Czech Technical University in Prague. Secondly, a brief review of various temperature distributions within a joint is presented, followed by a discussion of the behaviour of isolated joints at elevated temperature, focussing on failure modes and analytical procedures for predicting the moment-rotation behaviour of joints at elevated temperature. Finally, a description of the coupled behaviour of joints as part of complete structures is presented, describing previous work and investigations on real fire (including heating and cooling phases) currently being carried out by the authors.