• Title/Summary/Keyword: composite ground

Search Result 422, Processing Time 0.019 seconds

MICROLEAKAGE OF THE CLASS V CAVITY ACCORDING TO RESTORATION SITE AND CAVITY SIZE USING SEM AND THREE-DIMENSIONAL RECONSTRUCTION TECHNIQUES (SEM과 3차원 재구성법을 이용한 수복면의 위치와 와동 크기에 따른 미세누출도 분석)

  • Yang, In-Seo;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.2
    • /
    • pp.112-120
    • /
    • 2005
  • This study was done to evaluate whether there were any differences in microleakage of class V composite restorations according to restoration site and cavity size. Total sixty-four restorations were made in molar teeth using Esthet-X. Small ($2\;{\times}\;2\;{\times}\;1.5\;mm$) and large ($4{\times}2{\times}1.5\;mm$) restorations were made at the buccal/lingual surface and the proximal surface each. After 1,000 times of thermocycling ($5^{\circ}\;-\;55^{\circ}C$), resin replica was made and the percentage of marginal gap to the whole periphery of the restoration was estimated from SEM evaluation. Thermocycled tooth was dye penetrated with $50\%$ silver nitrate solution. After imbedding in an auto-curing resin, it was serially ground with a thickness of 0.25 mm. Volumetric microleakage was estimated after reconstructing three dimensionally. Two-way ANOVA and independent T-test for dye volume, Mann-Whitney U test for the percentage of marginal gap, Spearman's rho test for the relationship between two techniques were used, The results were as follows : 1. The site and size of the restoration affected on the microleakage of restoration. Namely, much more leakage was seen in the proximal and the large restorations rather than the buccal/lingual and the small restorations. 2. Close relationship was found between two techniques (Correlation coefficient = 0.614/ P = 0.000). Within the limits of this study, it was noted that proximal and the large restorations leaked more than buccal/lingual and the small restorations. Therefore, it should be strictly recommended large exposure of margins should be avoided by reducing unnecessary tooth reduction.

The Moving Speed of Typhoons of Recent Years (2018-2020) and Changes in Total Precipitable Water Vapor Around the Korean Peninsula (최근(2018-2020) 태풍의 이동속도와 한반도 주변의 총가강수량 변화)

  • Kim, Hyo Jeong;Kim, Da Bin;Jeong, Ok Jin;Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.264-277
    • /
    • 2021
  • This study analyzed the relationship between the total precipitable water vapor in the atmosphere and the moving speed of recent typhoons. This study used ground observation data of air temperature, precipitation, and wind speed from the Korea Meteorological Administration (KMA) as well as total rainfall data and Red-Green-Blue (RGB) composite images from the U.S. Meteorological and Satellite Research Institute and the KMA's Cheollian Satellite 2A (GEO-KOMPSAT-2A). Using the typhoon location and moving speed data provided by the KMA, we compared the moving speeds of typhoon Bavi, Maysak, and Haishen from 2020, typhoon Tapah from 2019, and typhoon Kong-rey from 2018 with the average typhoon speed by latitude. Tapah and Kong-rey moved at average speed with changing latitude, while Bavi and Maysak showed a significant decrease in moving speed between approximately 25°N and 30°N. This is because a water vapor band in the atmosphere in front of these two typhoons induced frontogenesis and prevented their movement. In other words, when the water vapor band generated by the low-level jet causes frontogenesis in front of the moving typhoon, the high pressure area located between the site of frontogenesis and the typhoon develops further, inducing as a blocking effect. Together with the tropical night phenomenon, this slows the typhoon. Bavi and Maysak were accompanied by copious atmospheric water vapor; consequently, a water vapor band along the low-level jet induced frontogenesis. Then, the downdraft of the high pressure between the frontogenesis and the typhoon caused the tropical night phenomenon. Finally, strong winds and heavy rains occurred in succession once the typhoon landed.