• Title/Summary/Keyword: composite distribution

Search Result 1,538, Processing Time 0.026 seconds

Buckling and Post buckling Analysis of Composite Plates with Internal Flaws

  • Sreehari, VM;Maiti, DK
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.19-23
    • /
    • 2015
  • This work deals with the study of buckling and post buckling characteristics of laminated composite plates with and without localized regions of damage. The need of a detailed study on Finite Element Analysis of buckling and post buckling of laminated composite structures considering various aspects enhances the interest among researchers. Mathematical formulation is developed for damaged composite plates using a finite element technique based on Inverse Hyperbolic Shear Deformation Theory. This theory satisfies zero transverse shear stresses conditions at the top and bottom surfaces of the plate and provides a non-linear transverse shear stress distribution. Damage modeling is done using an anisotropic damage formulation, which is based on the concept of stiffness change. The structural elements are subjected to in-plane loading. The computer program is developed in MATLAB environment. The numerical results are presented after through validation of developed finite element code. The effect of damage on buckling and post buckling has been carried out for various parameters such as amount of percentage of damaged area, damage intensity, etc. The results show that the presence of internal flaws will significantly affect the buckling characteristics of laminated composite plates. The outcomes and remarks from this work will assist to address some key issues concerning composite structures.

Composite deck construction for the rehabilitation of motorway bridges

  • Greiner, R.;Ofner, R.;Unterweger, H.
    • Steel and Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.67-84
    • /
    • 2002
  • Traffic decks of steel or composite motorway bridges sometimes provide the opportunity of using the composite action between an existing steel deck and a reinforced concrete plate (RC plate) in the process of rehabilitation, i.e., to increase the load-carrying capacity of the deck for concentrated traffic loads. The steel decks may be orthotropic decks or also unstiffened steel plates, which during the rehabilitation are connected with the RC plate by shear studs, such developing an improved local load distribution by the joint behaviour of the two plate elements. Investigations carried out, both experimentally and numerically, were performed in order to quantitatively assess the combined static behaviour and to qualitatively verify the usability of the structure for dynamic loading. The paper reports on the testing, the numerical simulation as well as the comparison of the results. Conclusions drawn for practical design indicated that the static behaviour of these structures may be very efficient and can also be analysed numerically. Further, the results gave evidence of a highly robust behaviour under fatigue equivalent cyclic traffic loading.

On transverse matrix cracking in composite laminates loaded in flexure under transient hygrothermal conditions

  • Khodjet-Kesba, M.;Benkhedda, A.;Adda Bedia, E.A.;Boukert, B.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.165-173
    • /
    • 2018
  • A simple predicted model using a modified Shear-lag method was used to represent the moisture absorption effect on the stiffness degradation for $[0/90]_{2s}$ composite laminates with transverse cracks and under flexural loading. Good agreement is obtained by comparing the prediction model and experimental data published by Smith and Ogin (2000). The material properties of the composite are affected by the variation of temperature and moisture absorption. The transient and non-uniform moisture concentration distribution give rise to the transient elastic moduli of cracked composite laminates. The hygrothermal effect is taken into account to assess the changes in the normalised axial and flexural modulus due to transverse crack. The obtained results represent well the dependence of the stiffness properties degradation on the cracks density, moisture absorption and operational temperature. The composite laminate with transverse crack loaded in axial tension is more affected by the hygrothermal condition than the one under flexural loading. Through this theoretical study, we hope to contribute to the understanding of the moisture absorption on the composite materials with matrix cracking.

Structural behavior of sandwich composite wall with truss connectors under compression

  • Qin, Ying;Chen, Xin;Zhu, Xingyu;Xi, Wang;Chen, Yuanze
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.159-169
    • /
    • 2020
  • Sandwich composite wall consists of concrete core attached by two external steel faceplates. It combines the advantage of steel and concrete. The appropriate composite action between steel faceplate and concrete core is achieved by using adequate mechanical connectors. This research studied the compressive behavior of the sandwich composite walls using steel trusses to bond the steel faceplates to concrete infill. Four short specimens with different wall width and thickness of steel faceplate were designed and tested under axial compression. The test results were comprehensively evaluated in terms of failure modes, load versus axial and lateral deformation responses, resistance, stiffness, ductility, strength index, and strain distribution. The test results showed that all specimens exhibited high resistance and good ductility. Truss connectors offer better restraint to walls with thinner faceplates and smaller wall width. In addition, increasing faceplate thickness is more effective in improving the ultimate resistance and axial stiffness of the wall.

A Test of Fit for Inverse Gaussian Distribution Based on the Probability Integration Transformation (확률적분변환에 기초한 역가우스분포에 대한 적합도 검정)

  • Choi, Byungjin
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.4
    • /
    • pp.611-622
    • /
    • 2013
  • Mudholkar and Tian (2002) proposed an entropy-based test of fit for the inverse Gaussian distribution; however, the test can be applied to only the composite hypothesis of the inverse Gaussian distribution with an unknown location parameter. In this paper, we propose an entropy-based goodness-of-fit test for an inverse Gaussian distribution that can be applied to the composite hypothesis of the inverse Gaussian distribution as well as the simple hypothesis of the inverse Gaussian distribution with a specified location parameter. The proposed test is based on the probability integration transformation. The critical values of the test statistic estimated by simulations are presented in a tabular form. A simulation study is performed to compare the proposed test under some selected alternatives with Mudholkar and Tian (2002)'s test in terms of power. The results show that the proposed test has better power than the previous entropy-based test.

Antibacterial activity of florfenicol composite nanogels against Staphylococcus aureus small colony variants

  • Liu, Jinhuan;Ju, Mujie;Wu, Yifei;Leng, Nannan;Algharib, Samah Attia;Luo, Wanhe
    • Journal of Veterinary Science
    • /
    • v.23 no.5
    • /
    • pp.78.1-78.13
    • /
    • 2022
  • Background: Florfenicol might be ineffective for treating Staphylococcus aureus small colony variants (SCVs) mastitis. Objectives: In this study, florfenicol-loaded chitosan (CS)-sodium tripolyphosphate (TPP) composite nanogels were prepared to allow targeted delivery to SCV infected sites. Methods: The formulation screening, the characteristics, in vitro release, antibacterial activity, therapeutic efficacy, and biosafety of the florfenicol composite nanogels were studied. Results: The optimized formulation was obtained when the CS and TPP were 10 and 5 mg/mL, respectively. The encapsulation efficiency, loading capacity, size, polydispersity index, and zeta potential of the optimized florfenicol composite nanogels were 87.3% ± 2.7%, 5.8% ± 1.4%, 280.3 ± 1.5 nm, 0.15 ± 0.03, and 36.3 ± 1.4 mv, respectively. Optical and scanning electron microscopy showed that spherical particles with a relatively uniform distribution and drugs might be incorporated in cross-linked polymeric networks. The in vitro release study showed that the florfenicol composite nanogels exhibited a biphasic pattern with the sustained release of 72.2% ± 1.8% at 48 h in pH 5.5 phosphate-buffered saline. The minimal inhibitory concentrations of commercial florfenicol solution and florfenicol composite nanogels against SCVs were 1 and 0.25 ㎍/mL, respectively. The time-killing curves and live-dead bacterial staining showed that the florfenicol composite nanogels were concentration-dependent. Furthermore, the florfenicol composite nanogels displayed good therapeutic efficacy against SCVs mastitis. Biological safety studies showed that the florfenicol composite nanogels might be a biocompatible preparation because of their non-toxic effects on the renal tissue and liver. Conclusions: Florfenicol composite nanogels might improve the treatment of SCV infections.

An approach for calculating the failure loads of unprotected concrete filled steel columns exposed to fire

  • Wang, Y.C.;Kodur, V.K.R.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.127-145
    • /
    • 1999
  • This paper deals with the development of an approach for evaluating the squash load and rigidity of unprotected concrete filled steel columns at elevated temperatures. The current approach of evaluating these properties is reviewed. It is shown that with a non-uniform temperature distribution, over the composite cross-section, the calculations for the squash load and rigidity are tedious in the current method. A simplified approach is proposed to evaluate the temperature distribution, squash load, and rigidity of composite columns. This approach is based on the model in Eurocode 4 and can conveniently be used to calculate the resistance to axial compression of a concrete filled steel column for any fire resistance time. The accuracy of the proposed approach is assessed by comparing the predicted strengths against the results of fire tests on concrete filled circular and square steel columns. The applicability of the proposed approach to a design situation is illustrated through a numerical example.

Prediction of Laminate Composite Strength Using Probabilistic Approach (확률분포를 이용한 복합재료의 강도예측)

  • 조영준;강태진;이경우
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.33-39
    • /
    • 2000
  • A numerical approach for predicting the ultimate strength of laminate composites has been studied using the Weibull distribution of the strengths of lamina plies. The probabilistic initial failure strengths of laminates were calculated using Tsai-Hill failure criterion. The ultimate strength of the laminate composites has been predicted using progressive failure analysis. The experimental results show that the strength prediction based on the Weibull distribution of ply strength reasonably agrees well with the experimentals better than equal strength assumption.

  • PDF

Finite Element Analysis of Fuel Cell Stack with Orthotropic Material Model (직교이방성 연료전지 스택의 유한요소 해석)

  • 전지훈;황운봉;조규택;김수환;임태원
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.175-178
    • /
    • 2003
  • Mechanical behavior of a fuel stack was studied by the orthotropic material model. The fuel stack is mainly composed of bipolar plate (BP), gasket, end plate, membrane electrolyte assembly (MEA), and gas diffusion layer (GDL). Each component is fastened with a suitable pressure. It is very important to maintain a suitable contact pressure of BP, because it affects the efficiency of the fuel cell. This study compared mechanical behavior of various fastening types of the fuel cell stack. Bar, band, and modified band fastening type are used. The band fastening type showed that it reduces total volume of the cell, but it does not improve the contact pressure distribution of each BP. The modified band fastening type was designed by considering the deformations of band fastening type, and it showed a good enhancement of contact pressure distribution.

  • PDF

Influence of interaction between coal and rock on the stability of strip coal pillar

  • Gao, W.
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.151-157
    • /
    • 2018
  • The constrained conditions of roof and floor for the coal pillar affect the strength of coal pillar very seriously. To analyze the influence of rock mass for the roof and floor on the stability of coal pillar comprehensively, one method based on the mechanical method for the composite rock mass was proposed. In this method, the three rock layers of roof, floor and coal pillar are taken as the bedded composite rock mass. And the influence of rock mass for the roof and floor on the elastic core of coal pillar has been analyzed. This method can obtain not only the derived stress by the cohesive constraining forces for the coal pillar, but also the derived stress for the rock mass of the roof and floor. Moreover, the effect of different mechanical parameters for the roof and floor on the stability of coal pillar have been analyzed systematically. This method can not only analyze the stability of strip coal pillar, but also analyze the stability of other mining pillars whose stress distribution is similar with that of the strip coal pillar.