• 제목/요약/키워드: composite distribution

검색결과 1,538건 처리시간 0.024초

다양한 기하학적 형상을 갖는 복합 적층쉘 구조의 유한차분해석 (Finite Difference Analysis of Laminated Composite Shell Structures with Various Geometrical Shapes)

  • 박해길;이상열;장석윤
    • 복합신소재구조학회 논문집
    • /
    • 제1권3호
    • /
    • pp.24-34
    • /
    • 2010
  • 본 논문은 전단변형효과를 고려한 복합신소재 적층 쉘을 해석하기 위하여, 일반 쉘의 지배방정식을 유도하고, 이 방정식을 풀기 위하여 수치해석 기법중 하나인 유한차분법을 수행하였다. 유한차분법을 미분방정식을 지배방정식으로 가지는 구조물 해석시 간편하게 사용될 수 있고, 오차의 범위를 선택적으로 정할수 있는 장점이 있다. 수치해석 결과의 타당성을 검증하기 위하여 수렴도 분석과 범용 구조해석 프로그램인 LUSAS의 해석결과와 비교하였다. 본 논문의 목적은 전단변형 효과를 고려한 일반 쉘의 거동 특징 및 분석, 복합재료로 구성되었을 경우 정확한 거동을 분석하고, 쉘 구조물이 보다 높은 강성을 가질 수 있도록 하는 적절한 화이버의 보강방안과 다양한 조건 변화를 통해서 최적의 쉘 구조물을 제시하는 것이다. 쉘의 곡률의 변화에 따른 거동과 합응력의 변화를 분석하고, 쉘의 높이-너비 비와 화이버 보강각도 변화에 따른 처짐 및 합응력의 변화를 비교, 분석하여 보다 유리한 쉘 구조물을 제시하였다. 또한 다양한 하중을 가하여 쉘의 형상 변화를 비교 분석함으로서 비등방성 재료로 이루어진 일반 쉘의 거동에 대하여 분석하였다.

  • PDF

수복재와 이장재에 따른 응력과 온도 분포의 유한 요소 분석 (FINITE ELEMENT ANALYSIS OF STRESS AND TEMPERATURE DISTRIBUTION AFFECTED BY VARIOUS RESTORATIVE AND BASE MATERIAL)

  • 이재영;오태석;임성삼
    • Restorative Dentistry and Endodontics
    • /
    • 제25권3호
    • /
    • pp.321-337
    • /
    • 2000
  • Dental caries, one of the most frequent dental disease, become larger because it can be thought as a simple disease. Further more, it can progress to unexpected root canal therapy with fabrication of crown that needs reduction of tooth structure. Base is required in a large caries and ZOE, ZPC, glass ionomer are used frequently as base material. They, with restorative material, can affect the longevity of the restoration. In this study, we assume that the mandibular 1st molar has deep class I cavity. So, installing the 3 base material, 3 kinds of fillings were restored over the base as follows; 1) amalgam only, 2) amalgam with ZPC, 3) amalgam with ZOE, 4) amalgam with GI cement, 5) gold inlay with ZPC, 6) gold inlay with GI cement, 7) composite resin only, 8) composite resin with GI cement. After develop the 3-dimensional model for finite element analysis, we observe the distribution of stress and temperature with force of 500N to apical direction at 3 point on occlusal surface and temperature of 55 degree, 15 degree on entire surface. The analyzed results were as follow : 1. Principal stress produced at the interface of base, dentin, cavity wall was smallest in case of using GI cement as base material under the amalgam. 2. Principal stress produced at the interface of base, dentin, cavity wall was smaller in case of using GI cement as a base material than ZPC under gold inlay. 3. Composite resin-filled tooth showed stress distributed over entire tooth structure. In other words, there was little concentration of stress. 4. ZOE was the most effective base material against hot stimuli under the amalgam and GI cement was the next. In case of gold inlay, GI cement was more effective than ZPC. 5. Composite resin has the small coefficient of thermal conductivity. So, composite resin filling is the most effective insulating material.

  • PDF

원통형 복합재료 압력 용기의 기계적 물성 평가를 위한 세그먼트 형 링 버스트 시험 방법 분석 (Analysis of the Segment-type Ring Burst Test Method for the Mechanical Property Evaluation of Cylindrical Composite Pressure Vessel)

  • 김외태;김성수
    • Composites Research
    • /
    • 제34권4호
    • /
    • pp.257-263
    • /
    • 2021
  • 복합재료는 높은 비 강성 및 비 강도 특성으로 인해 기체 혹은 액체 연료를 저장하기 위한 압력 용기의 설계 및 제작에 널리 활용되고 있다. 이에 따라, 압력용기의 파열압력 또는 파단 변형률의 기계적 특성의 보다 정확한 측정은 상용화 전에 필수적 요소이다. 그러나, 기존의 시험방법을 활용한 복합재료 압력 용기의 안전성 검증은 하중 전달 매체의 변형으로 인한 추가적인 에너지 손실의 발생과, 불필요한 하중 및 모멘트의 발생 등의 한계가 있다. 따라서 본 연구에서는 수직기둥의 이론적인 하중전달 정도와 적용 가능한 수직방향 변위를 고려하여 세그먼트형 링 버스트 시험장치를 설계하였다. 또한, 세그먼트 형 링 버스트 시험장치의 균일한 압력분포를 검증하기 위해 수치해석을 활용하였고, 수압 시험방법과 링 시편의 원주방향 응력 및 변형률 분포를 비교하였다. 복합재료 압력용기의 파괴 거동을 모사하기 위해 Hashin 파손 기준을 적용하였고, 실험적으로 파단 변형률을 측정하여 이를 수치해석 결과와 비교하였다.

An accurate approach for buckling analysis of stringer stiffened laminated composite cylindrical shells under axial compression

  • Davood Poorveis;Amin Khajehdezfuly;Mohammad Reza Sardari;Shapour Moradi
    • Steel and Composite Structures
    • /
    • 제51권5호
    • /
    • pp.543-562
    • /
    • 2024
  • While the external axial compressive load is applied to only the shell edge of stringer-stiffened shell in the most of numerical and analytical previous studies (entitled as conventional approach), a part of external load is applied to the stringers in real conditions. It leads to decrease the accuracy of the axial buckling load calculated by the conventional eigenvalue analysis approach performed in the most of previous studies. In this study, the distribution of stress in the pre-buckling analysis was enhanced by applying the axial external compressive load to both shell and stringers to perform an accurate eigenvalue analysis of the stringer-stiffened composite shell. In this regard, a model was developed in FORTRAN environment to simulate the laminated stringer-stiffened shell under axial compressive load using finite strip method. The axial buckling load of the shell was obtained through eigenvalue analysis. A comparison was made between the results obtained from the model and those available in the previous studies to evaluate the validity of the results obtained from the model. Through a parametric study, the effects of different parameters such as stringer properties and composite layup on the buckling load of the shell under different loading patterns were investigated. The results indicated that in some cases, the axial buckling load obtained for the conventional approach used in the most of previous studies is significantly overestimated or underestimated due to neglecting the stringer in distribution of external load applied to the stringer-stiffened shell. According to the results obtained from the parametric study, some graphs were derived to show the accuracy of the axial buckling load obtained from the conventional approach utilized in the literature.

Detection of delamination damage in composite beams and plates using wavelet analysis

  • Bombale, B.S.;Singha, M.K.;Kapuria, S.
    • Structural Engineering and Mechanics
    • /
    • 제30권6호
    • /
    • pp.699-712
    • /
    • 2008
  • The effectiveness of wavelet transform in detecting delamination damages in multilayered composite beams and plates is studied here. The damaged composite beams and plates are modeled in finite element software ABAQUS and the first few mode shapes are obtained. The mode shapes of the damaged structures are then wavelet transformed. It is observed that the distribution of wavelet coefficients can identify the damage location of beams and plates by showing higher values of wavelet coefficients at the position of damage. The effectiveness of the method is studied for different boundary conditions, damage location and size for single as well as multiple delaminations in composite beams and plates. It is observed that both discrete wavelet transform (DWT) and continuous wavelet transform (CWT) can detect the presence and location of the damaged region from the mode shapes of the structures. DWT may be used to approximately evaluate the size of the delamination area, whereas, CWT is efficient to detect smaller delamination areas in composites.

Micromechanical failure analysis of composite materials subjected to biaxial and off-axis loading

  • Ahmadi, Isa
    • Structural Engineering and Mechanics
    • /
    • 제62권1호
    • /
    • pp.43-54
    • /
    • 2017
  • In this study, the failure behavior of composite material in the biaxial and off-axis loading is studied based on a computational micromechanical model. The model is developed so that the combination of mechanical and thermal loading conditions can be considered in the analysis. The modified generalized plane strain assumption of the theory of elasticity is used for formulation of the micromechanical modeling of the problem. A truly meshless method is employed to solve the governing equation and predict the distribution of micro-stresses in the selected RVE of composite. The fiber matrix interface is assumed to be perfect until the interface failure occurs. The biaxial and off-axis loading of the SiC/Ti and Kevlar/Epoxy composite is studied. The failure envelopes of SiC/Ti and Kevlar/Epoxy composite in off-axis loading, biaxial transverse-transverse and axial-transverse loading are predicted based on the micromechanical approach. Various failure criteria are considered for fiber, matrix and fiber-matrix interface. Comparison of results with the available results in the litreture shows excellent agreement with experimental studies.

Micromechanical시험법과 Acoustic Emission을 이용한 Implant용 생흡수성 복합재료의 계면물성과 미세파괴 분해메카니즘 (Interfacial Properties and Microfailure Degradation Mechanisms of Bioabsorbable Composites for Implant Materials using Micromechanical Technique and Acoustic Emission)

  • Kim, Dae-Sik;Park, Joung-Man;Kim, Sung-Ryong
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.263-267
    • /
    • 2001
  • The changes of interfacial properties and microfailure degradation mechanisms of bioabsorbable composites with hydrolysis were investigated using micromechanical test and acoustic emission (AE). As hydrolysis time increased, the tensile strength, the modulus and the elongation of PEA and bioactive glass fibers decreased, whereas those of chitosan fiber changed little. Interfacial shear strength (IFSS) of bioactive glass fiber/poly-L-lactide (PLLA) composite was significantly higher than that two other systems. The decreasing rate of IFSS was the fastest in bioactive glass fiber/PLLA composite, whereas that of chitosan fiber/PLLA composite was the slowest. With increasing hydrolysis time, distribution of AE amplitude was narrow, and AE energy decreased gradually.

  • PDF

플라즈마 용사에 의한 AlSi-Al$_2$O$_3$ 복합재료 코팅층의 미세조직 및 마찰.마모특성 (Microstructure and Tribological Characteristics of AlSi-Al$_2$O$_3$ Composite Coating Prepared by Plasma Spray)

  • 민준원;유승을;김영정;서동수
    • Journal of Welding and Joining
    • /
    • 제22권5호
    • /
    • pp.46-52
    • /
    • 2004
  • AlSi-Al$_2$O$_3$ composite layer was prepared by plasma spray on steel substrate. The composite powder for plasma spray was prepared by simple mechanical blending. The wear resistance of the composite layers and matrix aluminum alloy were performed in terms of size distribution of ceramic particles. Friction coefficients of AlSi were decreased with incorporation of $Al_2$O$_3$. The tribological properties of coated layers were affected by the size of incorporated $Al_2$O$_3$ particle. The reinforcement of $Al_2$O$_3$ particle into aluminum alloy matrix decreased the friction coefficient as well as wear loss.

복합소재 기둥 구조의 실차 충돌 해석에 의한 탑승자 안전성 평가 (Passenger Safety Assessment by Real Car Crash Simulation of Composite Post Structures)

  • 김규동;이상열
    • 복합신소재구조학회 논문집
    • /
    • 제5권2호
    • /
    • pp.15-20
    • /
    • 2014
  • This study carried out passenger safety assessment by real car crash simulation of composite post structures for road facilities. The effects of different material properties of composites for various parameters are studied using the LS-DYNA finite element program for this study. In this study, the existing finite element analysis of steel post structures using the LS-DYNA program is further extended to study dynamic behaviors of the structures made of various composite materials. The numerical results for various parameters are verified by comparing different models with displacements and stress distribution occurred in the post and car.

Analysis of composite steel-concrete beams using a refined high-order beam theory

  • Lezgy-Nazargah, M.;Kafi, L.
    • Steel and Composite Structures
    • /
    • 제18권6호
    • /
    • pp.1353-1368
    • /
    • 2015
  • A finite element model is presented for the analysis of composite steel-concrete beams based on a refined high-order theory. The employed theory satisfies all the kinematic and stress continuity conditions at the layer interfaces and considers effects of the transverse normal stress and transverse flexibility. The global displacement components, described by polynomial or combinations of polynomial and exponential expressions, are superposed on local ones chosen based on the layerwise or discrete-layer concepts. The present finite model does not need the incorporating any shear correction factor. Moreover, in the present $C^1$-continuous finite element model, the number of unknowns is independent of the number of layers. The proposed finite element model is validated by comparing the present results with those obtained from the three-dimensional (3D) finite element analysis. In addition to correctly predicting the distribution of all stress components of the composite steel-concrete beams, the proposed finite element model is computationally economic.