• Title/Summary/Keyword: composite concrete

Search Result 2,761, Processing Time 0.025 seconds

Influence of Constitute Factor on the Compressive Strength of Ultra-High Strength Steel Fiber Reinforced Cementitious Composites (초고강도 강섬유 보강 시멘트 복합체의 구성인자가 압축강도에 미치는 영향)

  • Park Jung-Jun;Koh Kyung-Taek;Kang Su-Tae;Kim Sung-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.35-41
    • /
    • 2005
  • Recently, various fiber reinforced cementitious composites are used in order to solve problems of concrete as the brittleness breaking. Especially, in U.S.A., Europe, and Japan, ultra-high strength steel fiber reinforced cementitious composites(ultra-high strength SFRCC) with compressive strength in excess of 100 MPa were developed. However few studies have been investigated on the high-strength SFRCC in Korea. Therefore, in this paper, to make ultra-high strength SFRCC with the range of compressive strength 180MPa, it was investigated the constitute factors of ultra-high strength SFRCC influenced on the compressive strength. The experimental variables were water-binder ratio, replacement of silica fume, size and proportion of sand, type and replacement of filling powder, and using of steel fiber in ultra-high strength SFRCC. As a result, in water-binder ratio 0.20, we could make ultra-high strength SFRCC with compressive strength of 180MPa through using of silica fume, quartz sand with below 0.5mm filling powder and steel fiber.

Experimental Study for the Bending Behavior of Precast Concrete Panel and Composite Deck for Railway Bridge (철도교 바닥판용 프리캐스트 패널과 합성 바닥판의 휨거동에 대한 실험적 연구)

  • Seol, Dae-Ho;Lee, Kyoung-Chan;Youn, Seok-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.21-31
    • /
    • 2018
  • This paper presents an experimental investigation on the structural performance of precast ribbed panel specimens and bridge deck specimens fabricated from the panels. The panel specimens are developed for permanent deck forms of railway bridges (PSC girder). The decks of railway bridges have short lengths compared with highway bridges. Therefore, precast panels for railway bridges are different from those of highway bridges. The precast panels have ribs designed for crack control at the bottom of the sections. Two kinds of specimens were examined: one with 400-mm width and one with 1200-mm width. Three specimens of each type were fabricated, and a total of 12 specimens were tested. In this test, the ultimate load, strain of the reinforcement and concrete, crack width, deformation, and slip were measured. The structural performance of the specimens was assessed using the Korea railway bridge design code and Eurocode. All specimens met the current design criteria for structural strength and serviceability.

Procuring the Fire Resistance Performance and Structure of Non-Refractory Coating CFT with Using the Corrugate-rib (Corrugate-rib를 활용한 무내화피복 CFT공법의 구조 및 내화성능 확보)

  • Lee, Dong-Oun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.747-754
    • /
    • 2017
  • The Concrete-Filled Tube (CFT) system was developed for its excellent structural performance, such as its good stiffness, stress and ductility, which is derived from the mechanical advantages of its composite structure. However, it is known that the flat type of reinforcing plates need stiffeners placed at a certain distance from each other to avoid buckling failure, which increases the cost accordingly. This paper investigates the contribution of the rib elements placed inside the steel tube for the purpose of increasing the bond strength between the steel and concrete and fire performance with no additional protection. The test results also demonstrate the effectiveness of the corrugated rib's shape against fire. The results of this study showed that the buckling prevention and fire resistance performance criteria were satisfied by the application of the inner surface attachment rib, due to the resulting increase in the strength of the CFT column. Therefore, it is considered that the CFT method using the corrugated rib structure reinforcement developed through this study satisfies the structural and fire resistance performance criteria without the need for a refractory coating. Future studies will be needed to make the process efficient and economical for factory production.

Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns

  • Liu, Chanjuan;Wu, Xinling;Wakil, Karzan;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.743-767
    • /
    • 2020
  • Due to the impressive flexural performance, enhanced compressive strength and more constrained crack propagation, Fibre-reinforced concrete (FRC) have been widely employed in the construction application. Majority of experimental studies have focused on the seismic behavior of FRC columns. Based on the valid experimental data obtained from the previous studies, the current study has evaluated the seismic response and compressive strength of FRC rectangular columns while following hybrid metaheuristic techniques. Due to the non-linearity of seismic data, Adaptive neuro-fuzzy inference system (ANFIS) has been incorporated with metaheuristic algorithms. 317 different datasets from FRC column tests has been applied as one database in order to determine the most influential factor on the ultimate strengths of FRC rectangular columns subjected to the simulated seismic loading. ANFIS has been used with the incorporation of Particle Swarm Optimization (PSO) and Genetic algorithm (GA). For the analysis of the attained results, Extreme learning machine (ELM) as an authentic prediction method has been concurrently used. The variable selection procedure is to choose the most dominant parameters affecting the ultimate strengths of FRC rectangular columns subjected to simulated seismic loading. Accordingly, the results have shown that ANFIS-PSO has successfully predicted the seismic lateral load with R2 = 0.857 and 0.902 for the test and train phase, respectively, nominated as the lateral load prediction estimator. On the other hand, in case of compressive strength prediction, ELM is to predict the compressive strength with R2 = 0.657 and 0.862 for test and train phase, respectively. The results have shown that the seismic lateral force trend is more predictable than the compressive strength of FRC rectangular columns, in which the best results belong to the lateral force prediction. Compressive strength prediction has illustrated a significant deviation above 40 Mpa which could be related to the considerable non-linearity and possible empirical shortcomings. Finally, employing ANFIS-GA and ANFIS-PSO techniques to evaluate the seismic response of FRC are a promising reliable approach to be replaced for high cost and time-consuming experimental tests.

Hysteretic Behavior and Seismic Resistant Capacity of Precast Concrete Beam-to-Column Connections (프리캐스트 콘크리트 보-기둥 접합부의 이력거동 및 내진성능)

  • Choi, Hyun-Ki;Choi, Yun-Cheul;Choi, Chang-Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.61-71
    • /
    • 2010
  • Five half-scale beam-to-column connections in a precast concrete frame were tested with cyclic loading that simulated earthquake-type motions. Five half -scale interior beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including one monolithic specimen and four precast specimens. Variables included the detailing used at the joint to achieve a structural continuity of the beam reinforcement, and the type of special reinforcement in the connection (whether ECC or transverse reinforcement). The specimen design followed the strong-column-weak-beam concept. The beam reinforcement was purposely designed and detailed to develop plastic hinges at the beam and to impose large inelastic shear force demands into the joint. The joint performance was evaluated on the basis of connection strength, stiffness, energy dissipation, and drift capacity. From the test results, the plastic hinges at the beam controlled the specimen failure. In general, the performance of the beam-to-column connections was satisfactory. The joint strength was 1.15 times of that expected for monolithic reinforced concrete construction. The specimen behavior was ductile due to tensile deformability by ECC and the yielding steel plate, while the strength was nearly constant up to a drift of 3.5 percent.

Fatigue Capacity Evaluation of the Girder-Abutment Connection for the Steel-Concrete Composite Rigid-Frame Bridge Integrated with PS Bar (PS 강봉으로 일체화된 강합성 라멘교의 거더-교대 접합부에 대한 피로 성능 평가)

  • Ahn, Young-Soo;Oh, Min-Ho;Chung, Jee-Seung;Lee, Sang-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.249-258
    • /
    • 2012
  • Integral and rigid frame bridges have advantages in bridge maintenance and structural efficiency by eliminating expansion joints and bridge supports. However, the detail of typical girder-abutment connection is rather complex and increases construction cost depending on construction detail. For the purpose of compensating disadvantages such as complexity and additional cost, a new type of bridge is proposed in this study, which improves the efficiency of construction by simplifying the construction detail of girder-abutment connection. The proposed bridge has the connection detail of steel girder and abutment integrated by prestressed PS bar installed in the connection. In this study, finite element analysis and fatigue load test are conducted to evaluate the fatigue capacity of the proposed girder-abutment connection. The results of the finite element analysis revealed that the possibility of the fatigue damage in the girder-abutment connection is very low. The results of the fatigue load test verified that the integrity of the girder and abutment connection is maintained after 2,000,000 cycles of fatigue loading.

Box-Wilson Experimental Design-based Optimal Design Method of High Strength Self Compacting Concrete (Box-willson 실험계획법 기반 고강도 자기충전형 콘크리트의 최적설계방법)

  • Do, Jeong-Yun;Kim, Doo-Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.92-103
    • /
    • 2015
  • Box-Wilson experimental design method, known as central composite design, is the design of any information-gathering exercises where variation is present. This method was devised to gather as much data as possible in spite of the low design cost. This method was employed to model the effect of mixing factors on several performances of 60 MPa high strength self compacting concrete and to numerically calculate the optimal mix proportion. The nonlinear relations between factors and responses of HSSCC were approximated in the form of second order polynomial equation. In order to characterize five performances like compressive strength, passing ability, segregation resistance, manufacturing cost and density depending on five factors like water-binder ratio, cement content, fine aggregate percentage, fly ash content and superplasticizer content, the experiments were made at the total 52 experimental points composed of 32 factorial points, 10 axial points and 10 center points. The study results showed that Box-Wilson experimental design was really effective in designing the experiments and analyzing the relation between factor and response.

The Evaluation of flexure performance of SCP modules for LNG outer tank (LNG 외조탱크 적용을 위한 SCP 모듈의 휨성능 평가)

  • Park, Jung-Jun;Park, Gi-Joon;Kim, Sung-Wook;Kim, Eon;Shin, Dongkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.447-455
    • /
    • 2019
  • When constructing LNG storage structures using the cast-in-place method in extreme areas, the construction cost and time may be increased due to the poor working environments and conditions. Therefore, demand for modular energy storage tanks is increasing. In this study, we propose using an SCP module as an alternative for lighter-weight LNG storage tanks. The purpose of this study is to evaluate the feasibility of LNG storage outer tanks by performing bending tests on the thickness of composite steel plate concrete under field conditions. The loads on specimens with thicknesses of 100 mm and 200 mm were linearly increased to the design final loads of 413 kN and 822 kN, respectively. The slope was rapidly changed, and fracture occurred. The two test conditions showed linear behavior until the steel plate yielded, and after an extreme load behavior, sudden yielding of the steel plate yield occurred in the SCP bending test according to the INCA guidelines. The results satisfied the design flexural load and showed the possibility of using the specimens in a modular LNG outer tank. However, it is necessary to evaluate the structural performance of the SCP by performing compression and shear tests in future research.

Time Reduction Effect Analysis of SMART Frame for Long Span and Heavy Loaded Logistics Buildings (SMART 프레임의 공기단축 효과 분석 - 대형 물류창고 사례 -)

  • Kim, Doyeong;Ji, Woomin;Lim, Jeeyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.5
    • /
    • pp.519-530
    • /
    • 2022
  • As online commerce increases, the construction of large logistics buildings worldwide is exploding. Most of these buildings have the characteristics of long span and heavy loaded and use precast concrete components, a pin joint structure, for rapid construction. However, due to construction safety and structural stability requirements, the pin joint structure has many limitations in terms of the erection of the PC member, which increases the time and cost. A structural frame connected with steel joints between precast concrete components, called a SMART frame, has been developed, which addresses these constraints and risks. However, the effect of the appllication of a SMART frame on the time aspect has not been analysed. The study is a time reduction effect analysis of a SMART frame for long span and heavy loaded logistics buildings. For this study, the authors select a case site erected using existing PC components, and compare the time reduction with the SMART frame erection simulations. Through this analysis, it was found that a time reduciton about 4 months, approximately 48% of the conventional PC installation period could be achieved. If the SMART frame is applied when carrying out future large-scale logistics building projects, it can be expected to have the effect of significantly shortening the construction period compared to the conventional method.

Flexural Experiments on Reinforced Concrete Beams Strengthened with SHCC and Special Reinforcements (SHCC와 특수 보강근으로 보강된 철근콘크리트 보의 휨 성능 실험)

  • Chang-Jin Hyun;Ji-Seok Seo;Yun-Yong Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.46-53
    • /
    • 2023
  • In this paper, we evaluated the flexural performance of three types of reinforced concrete beams (SHCC-RB, SHCC-SB, SHCC-FRP) strengthened with ordinary steel rebar, very high strength (super strength) rebar, and FRP bars together with strain-hardening cement composite (SHCC). For this purpose, a series of beam specimens were manufactured and four-point load bending experiments were performed. As a result of the experiment, all specimens strengthened with SHCC exhibited tightly controlled flexural microcrakcs with the crack width of less than 100 ㎛. This is mostly due to the material properties of SHCC showing tensile strain hardening properties with multiple microcracks under uniaxial tension. The specimen SHCC-FRP showed lower initial cracking moment and yield flexural strength than SHCC-RB, whereas the maximum flexural strength of SHCC-FRP was superior to that of SHCC-RC. This is because the tensile strength of FRP bars is higher than that of ordinary steel reabr. The initial cracking moment of the beam specimen SHCC-SB was similar to that of SHCC-RB, but the yield flexural strength and maximum flexural strength of SHCC-SB were evaluated to be the highest.