• 제목/요약/키워드: composite columns (concrete and steel)

검색결과 496건 처리시간 0.038초

Thermo-mechanical compression tests on steel-reinforced concrete-filled steel tubular stub columns with high performance materials

  • David Medall;Carmen Ibanez;Ana Espinos;Manuel L. Romero
    • Steel and Composite Structures
    • /
    • 제49권5호
    • /
    • pp.533-546
    • /
    • 2023
  • Cost-effective solutions provided by composite construction are gaining popularity which, in turn, promotes the appearance on the market of new types of composite sections that allow not only to take advantage of the synergy of steel and concrete working together at room temperature, but also to improve their behaviour at high temperatures. When combined with high performance materials, significant load-bearing capacities can be achieved even with reduced cross-sectional dimensions. Steel-reinforced concrete-filled steel tubular (SR-CFST) columns are one of these innovative composite sections, where an open steel profile is embedded into a CFST section. Besides the renowned benefits of these typologies at room temperature, the fire protection offered by the surrounding concrete to the inner steel profile, gives them an enhanced fire performance which delays its loss of mechanical capacity in a fire scenario. The experimental evidence on the fire behaviour of SR-CFST columns is still scarce, particularly when combined with high performance materials. However, it is being much needed for the development of specific design provisions that consider the use of the inner steel profile in CFST columns. In this work, a new experimental program on the thermo-mechanical behaviour of SR-CFST columns is presented to extend the available experimental database. Ten SR-CFST stub columns, with circular and square geometries, combining high strength steel and concrete were tested. It was seen that the circular specimens reached higher failure times than the square columns, with the failure time increasing both when high strength steel was used at the embedded steel profile and high strength concrete was used as infill. Finally, different proposals for the reduction coefficients of high performance materials were assessed in the prediction of the cross-sectional fire resistance of the SR-CFST columns.

준정적 실험에 의한 SRC 합성교각의 내진성능 평가 (Seismic Performance Evaluation of SRC Column by Quasi-Static Test)

  • 한정훈;박창규;심창수;정영수
    • 한국지진공학회논문집
    • /
    • 제10권4호
    • /
    • pp.85-94
    • /
    • 2006
  • 지진지역의 교량교각에 대한 설계에서 요구연성도는 가장 중요한 요소이다. 철근콘크리트 교각의 내진성능 향상을 위해서 강관으로 교각을 감싸거나 후프철근과 같은 횡방향 철근을 이용하여 교각을 구속함으로써 교각의 연성도를 증가시키는 방안이 필요하다. 강재 매입형 교각을 이용하는 것은 RC 교각 내진성능을 향상시키는 유용한 방법중의 하나이다. 이 논문에서는 강재 매입형 합성교각의 내진성능을 평가하기 위하여 단일강재와 복수강재가 매입된 합성교각에 대하여 준정적 실험을 수행하였다. H형강이 매입된 실험체와 부분 충진된 원형강관이 매입된 단면으로 구성되어 총 8기의 실험체를 제작하였다. 실험변수는 심부구속 철근비, 매입 강재의 종류와 양으로서 이에 대한 변위연성도를 분석하였다. 실험결과 강재매입으로 인하여 교각의 변형능력이 증가하였으며 특히 원형강관이 매입된 교각의 변위연성도와 횡방향 강도가 가장 크게 나타났다.

Inelastic analysis for the post-collapse behavior of concrete encased steel composite columns under axial compression

  • Ky, V.S.;Tangaramvong, S.;Thepchatri, T.
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1237-1258
    • /
    • 2015
  • This paper proposes a simple inelastic analysis approach to efficiently map out the complete nonlinear post-collapse (strain-softening) response and the maximum load capacity of axially loaded concrete encased steel composite columns (stub and slender). The scheme simultaneously incorporates the influences of difficult instabilizing phenomena such as concrete confinement, initial geometric imperfection, geometric nonlinearity, buckling of reinforcement bars and local buckling of structural steel, on the overall behavior of the composite columns. The proposed numerical method adopts fiber element discretization and an iterative M${\ddot{u}}$ller's algorithm with an additional adaptive technique that robustly yields solution convergence. The accuracy of the proposed analysis scheme is validated through comparisons with various available experimental benchmarks. Finally, a parametric study of various key parameters on the overall behaviors of the composite columns is conducted.

Recycled aggregate concrete filled steel SHS beam-columns subjected to cyclic loading

  • Yang, You-Fu;Zhu, Lin-Tao
    • Steel and Composite Structures
    • /
    • 제9권1호
    • /
    • pp.19-38
    • /
    • 2009
  • The present paper provides test data to evaluate the seismic performance of recycled aggregate concrete (RAC) filled steel square hollow section (SHS) beam-columns. Fifteen specimens, including 12 RAC filled steel tubular (RACFST) columns and 3 reference conventional concrete filled steel tubular (CFST) columns, were tested under reversed cyclic flexural loading while subjected to constant axially compressive load. The test parameters include: (1) axial load level (n), from 0.05 to 0.47; and (2) recycled coarse aggregate replacement ratio (r), from 0 to 50%. It was found that, generally, the seismic performance of RACFST columns was similar to that of the reference conventional CFST columns, and RACFST columns exhibited high levels of bearing capacity and ductility. Comparisons are made with predicted RACFST beam-column bearing capacities and flexural stiffness using current design codes. A theoretical model for conventional CFST beam-columns is employed in this paper for square RACFST beam-columns. The predicted load versus deformation hysteretic curves are found to exhibit satisfactory agreement with test results.

Nonlinear analysis of concrete-filled steel composite columns subjected to axial loading

  • Bahrami, Alireza;Badaruzzamana, Wan Hamidon Wan;Osmanb, Siti Aminah
    • Structural Engineering and Mechanics
    • /
    • 제39권3호
    • /
    • pp.383-398
    • /
    • 2011
  • This paper investigates the nonlinear analysis of concrete-filled steel composite columns subjected to axial loading to predict the ultimate load capacity and behaviour of the columns. Finite element software LUSAS is used to conduct the nonlinear analyses. The accuracy of the finite element modelling is verified by comparing the result with the corresponding experimental result reported by other researchers. Nonlinear analyses are done to study and develop different shapes and number of cold-formed steel sheeting stiffeners with various thicknesses of cold-formed steel sheets. Effects of the parameters on the ultimate axial load capacity and ductility of the concrete-filled steel composite columns are examined. Effects of variables such as concrete compressive strength $f_c$ and cold-formed steel sheet yield stress $f_{yp}$ on the ultimate axial load capacity of the columns are also investigated. The results are shown in the form of axial load-normalized axial shortening plots. It is concluded from the study that the ultimate axial load capacity and behaviour of the concrete-filled steel composite columns can be accurately predicted by the proposed finite element modelling. Results in this study demonstrate that the ultimate axial load capacity and ductility of the columns are affected with various thicknesses of steel sheets and different shapes and number of stiffeners. Also, compressive strength $f_c$ of the concrete and yield stress $f_{yp}$ of the cold-formed steel sheet influence the performance of the columns significantly.

Steel and FRP double-tube confined RAC columns under compression: Comparative study and stress-strain model

  • Xiong, Ming-Xiang;Chen, Guangming;Long, Yue-Ling;Cui, Hairui;Liu, Yaoming
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.257-270
    • /
    • 2022
  • Recycled aggregate concrete (RAC) is rarely used in load-carrying structural members. To widen its structural application, the compressive behavior of a promising type of composite column, steel-fiber reinforced polymer (FRP) double-tube confined RAC column, has been experimentally and analytically investigated in this study. The objectives are the different performance of such columns from their counterparts using natural aggregate concrete (NAC) and the different mechanisms of the double-tube and single-tube confined concrete. The single-tube confined concrete refers to that in concrete-filled steel tubular (CFST) columns and concrete-filled FRP tubular (CFFT) columns. The test results showed that the use of recycled coarse aggregates (RCA) affected the axial load-strain response in terms of deformation capacity but such effect could be eliminated with the increasing confinement. The composite effect can be triggered by the double confinement of the steel and carbon FRP (CFRP) tubes but not by the steel and polyethylene terephthalate (PET) FRP tubes. The proposed analysis-oriented stress-strain model is capable to capture the load-deformation history of such steel-FRP double-tube confined concrete columns under axial compression.

SRC 합성교각의 설계에 대한 고찰 (Investigation on the Design of SRC Composite Columns)

  • 심창수;정영수;민진;정인근;한정훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.439-442
    • /
    • 2005
  • Steel encased composite columns are widely used due to their excellent structural performance in terms of stiffness, strength, and ductility. However, these columns were usually utilized for building structures and had higher steel ratio for small sections. For bridge pier applications, it is necessary to design the SRC columns having low steel ratio, which is nearly the same steel ratio as the normal RC columns. In this study, the evaluation of the composite columns with a core steel in term of the stiffness and the strength was investigated using experimental results. The effects of the steel ratio was also estimated using design provisions. The calculation of steel encased composite columns with multiple steel sections were performed and compared with RC columns.

  • PDF

Behavior of circular thin-walled steel tube confined concrete stub columns

  • Ding, Fa-xing;Tan, Liu;Liu, Xue-mei;Wang, Liping
    • Steel and Composite Structures
    • /
    • 제23권2호
    • /
    • pp.229-238
    • /
    • 2017
  • This paper presents a combined numerical and theoretical study on the composite action between steel and concrete of circular steel tube confined concrete (STCC) stub columns under axial compressive loading with a full theoretical elasto-plastic model and finite element (FE) model in comparison with experimental results. Based on continuum mechanics, the elasto-plastic model for STCC stub columns was established and the analysis was realized by a FORTRAN program and the three dimensional FE model was developed using ABAQUS. The steel ratio of the circular STCC columns were defined in range of 0.5% to 2% to analyze the composite action between steel tube and concrete, and make a further study on the advantages of the circular STCC columns. By comparing the results using the elasto-plastic methods with the parametric analysis result of FE model, the appropriate friction coefficient between the steel tube and core concrete was defined as 0.4 to 0.6. Based on ultimate balance theory, the formula of ultimate load capacity applying to the circular STCC stub columns was developed.

Axial compressive strength of short steel and composite columns fabricated with high stength steel plate

  • Uy, B.
    • Steel and Composite Structures
    • /
    • 제1권2호
    • /
    • pp.171-185
    • /
    • 2001
  • The design of tall buildings has recently provided many challenges to structural engineers. One such challenge is to minimise the cross-sectional dimensions of columns to ensure greater floor space in a building is attainable. This has both an economic and aesthetics benefit in buildings, which require structural engineering solutions. The use of high strength steel in tall buildings has the ability to achieve these benefits as the material provides a higher strength to cross-section ratio. However as the strength of the steel is increased the buckling characteristics become more dominant with slenderness limits for both local and global buckling becoming more significant. To arrest the problems associated with buckling of high strength steel, concrete filling and encasement can be utilised as it has the affect of changing the buckling mode, which increases the strength and stiffness of the member. This paper describes an experimental program undertaken for both encased and concrete filled composite columns, which were designed to be stocky in nature and thus fail by strength alone. The columns were designed to consider the strength in axial compression and were fabricated from high strength steel plate. In addition to the encased and concrete filled columns, unencased columns and hollow columns were also fabricated and tested to act as calibration specimens. A model for the axial strength was suggested and this is shown to compare well with the test results. Finally aspects of further research are addressed in this paper which include considering the effects of slender columns which may fail by global instabilities.

Analytical study of concrete-filled steel tubular stub columns with double inner steel tubes

  • Pouria Ayough;Yu-Hang Wang;Zainah Ibrahim
    • Steel and Composite Structures
    • /
    • 제47권5호
    • /
    • pp.645-661
    • /
    • 2023
  • Concrete-filled steel tubular columns with double inner steel tubes (CFST-DIST) are a novel type of composite members developed from conventional concrete-filled steel tubular (CFST) columns. This paper investigates the structural performance of circular CFST-DIST stub columns using nonlinear finite element (FE) analysis. A numerical model was developed and verified against existing experimental test results. The validated model was then used to compare circular CFST-DIST stub columns' behavior with their concrete-filled double skin steel tubular (CFDST) and CFST counterparts. A parametric study was performed to ascertain the effects of geometric and material properties on the axial performance of CFST-DISTs. The FE results and the available test data were used to assess the accuracy of the European and American design regulations in predicting the axial compressive capacity of circular CFST-DIST stub columns. Finally, a new design model was recommended for estimating the compressive capacity of CFST-DISTs. Results clarified that circular CFST-DIST columns had the advantages of their CFST counterparts but with better ductility and strength-to-weight ratio. Besides, the investigated design codes led to conservative predictions of the compressive capacity of circular CFST-DIST columns.