• Title/Summary/Keyword: composite aircraft

Search Result 400, Processing Time 0.025 seconds

A Feasibility Study of RTM Application on Secondary Fairing Structure of Aircraft (비용절감을 위한 항공기 2차 Fairing구조물의 RTM 적용 가능성 연구)

  • 김태곤;이동준;이건영;신대영
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.189-192
    • /
    • 2002
  • The autoclave process is frequently utilized in the manufacturing of aircraft parts because of the low void content and high fiber volume fraction. However, due to the slow curing process (5∼8 hours per part) and it's limited producibility for complicated shape, this process is very expensive and applied to the relatively simple geometry structures. RTM is considered as an alternative process to overcome the limitation of autoclave process. In this study, the idea of RTM application on the secondary Fairing structure of aircraft has been proved to be technically feasible and very cost effective by changing the multiple part of subassembly into one integral composite structure.

  • PDF

A Study on 4 Point Bending Strength of Aircraft Composite Specimens (항공기 복합재료 적용 시편의 4점 굽힘 강도 연구)

  • Kong, Changduk;Park, Hyunbum;Lim, Seongjin
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.1
    • /
    • pp.23-26
    • /
    • 2010
  • In this study, it was performed damage assesment of small scale composite aircraft developing. This aircraft adopted the sandwich structure to skin of wing. This study aims to investigate the residual strength of sandwich composites with Nomex honeycomb core and carbon fiber face sheets after the open hole damage by the experimental investigation. The 4-point bending tests were used to find the bending strength, and the open hole was applied to introduce the simulated damage on the specimen. The bending strength test results after open hole was compared with the results of no damaged specimen test. The FEM analysis is assessed via an experimental 4-point bending test.

  • PDF

A Study on the Analysis of causes & minimizing of Defects at Composite Materials Sandwich Aircraft Structure in Autoclave Processing (항공기용 복합재료 샌드위치 구조물의 오토클레이브 성형시 발생되는 결함 원인 분석과 그 최소화 방안)

  • 권순철;임철문;최병근;이세원;한중원;김윤해
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.29-33
    • /
    • 2000
  • The purpose of this paper is to determine the effect of the autoclave inner pressure rate, heat-up rate, tool round angle, Thickness of core, height of joggle on defects, and to minimize the defects of aircraft sandwich structure reinforced with honeycomb core occurred in autoclave processing. The results showed that the geometry of aircraft sandwich structure and tool such as tool round angle, Thickness of core, height of joggle, and the autoclave cure conditions such as inner pressure rate, heat up rate strongly affected the core movement, core wrinkle, bridge phenomenon of prepreg and depression of core that occurred in autoclave processing.

  • PDF

Reliability analysis on fatigue Strength for Certification of Aircraft Composite Structures

  • Choi, Cheong Ho;Lee, Doo Jin;Jo, Jae Hyun;Bae, Sung Hwan;Lee, Myung Jik;Lee, Jong Ho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.16-25
    • /
    • 2021
  • Reliability of fatigue strength on Aircraft Composites(GFRP) Structures was assessed in this paper. Fatigue strength of GFRP was used through the existing fatigue test data with Monte Carlo method. The Sa-Nf curve of composites fatigue strength was assumed as normal distribution and reliability was analyzed using SSIT model. Fatigue stress was designed IAW ASTM F3114-15 with special safety factor of Ssf=1.2~2.0. Reliability was calculated by analytic method and FORM. Sensitivity for the effect of mean and standard deviation of fatigue strength as well as fatigue stability was evaluated. This result can be usefully applied to reliability and fatigue design for composite structures of light weight aircraft.

Structural Design and Analysis of Composite Flaperon for a Supersonic Aircraft (초음속 항공기용 복합재 플래퍼론의 구조설계 및 해석)

  • Lee Myeong-Soo;Kweon Jin-Hwe;Kang Ki-Hwan;Lee Gwang-Young
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.116-120
    • /
    • 2004
  • A metal flaperon of a supersonic aircraft including the ribs, and skins was re-designed with a graphite/epoxy composite material to evaluate the weight saving effect. MSC/NASTRAN was used for the finite element analysis. The safety of the composite structures were evaluated in terms of the failure index, section cut, buckling, bearing/bypass and durability and damage tolerance analysis. After the application of the composite material, total weight saving of 25.6 pounds was achieved.

  • PDF

Evaluation of Residual Strength Under Impact Damage in Woven CFRP Composites (평직 CFRP 복합재료의 충격잔류강도 평가)

  • Choi, Jung-Hun;Kang, Min-Sung;Koo, Jae-Mean;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.654-663
    • /
    • 2012
  • Damage induced by low velocity impact loading in aircraft composite is the form of failure which is frequently occurred in aircraft. As the consequences of impact loading in composite laminates, matrix cracking, delamination and eventually fiber breakage for higher impact energies can be occurred. Even when no visible impact damage is observed, damage can exist inside of composite laminates and carrying load of the composite laminates is considerably reduced. The objective of this study is to evaluate and predict residual strength behavior of composite laminates by impact loading and for this, tensile test after impact was carried out on composite laminates made of woven CFRP.

Interfacial Properties and Curing Behavior of Carbon Fiber/Epoxy Composites using Micromechanical Techniques and Electrical Resistivity Measurement (Micromechanical 시험법과 전기적 고유저항 측정을 이용한 탄소섬유강화복합재료의 계면 물성과 경화거동에 관한 연구)

  • 이상일;박종만
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.17-21
    • /
    • 2000
  • Logarithmic electrical resistivity of the untreated or thin diameter carbon fiber composite increased suddenly to the infinity when the fiber fracture occurred by tensile electro-micromechanical test, whereas that of the ED or thick fiber composite increased relatively broadly up to the infinity. Electrical resistance of single-carbon fiber composite increased suddenly due to electrical disconnection by the fiber fracture in tensile electro-micromechanical test, whereas that of SFC increased stepwise due to the occurrence of the partial electrical contact with increasing the buckling or overlapping in compressive test. Electrical resistivity measurement can be very useful technique to evaluate interfacial properties and to monitor curing behavior of single-carbon fiber/epoxy composite under tensile/compressive loading.

  • PDF

Design Scheme of FBG Sensor System for Aircraft Application (항공기 탑재를 위한 FBG 센서 장비의 설계조건 도출)

  • Park, Sang-Wuk;Yoon, Hyuk-Jin;Park, Sang-Oh;Song, Ji-Yong;Kim, Chun-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.215-218
    • /
    • 2005
  • In this research, design scheme of fiber Bragg grating(FBG) sensor system for aircraft application is suggested from the results and the know-how from the fon11er researches on structural health monitoring techniques using fiber optic sensors. Design factors to be taken into consideration were derived for both sensor parts including connection and system parts. For the stability of FBG sensor system, design requirements of temperature, vibration, humidity, electromagnetic interference were presented from U. S. military standards. The direction of software programming which increases stability and perfon11ance of the aircraft with the FBG sensor system was also examined.

  • PDF

AFP mandrel development for composite aircraft fuselage skin

  • Kumar, Deepak;Ko, Myung-Gyun;Roy, Rene;Kweon, Jin-Hwe;Choi, Jin-Ho;Jeong, Soon-Kwan;Jeon, Jin-Woo;Han, Jun-Su
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.32-43
    • /
    • 2014
  • Automatic fiber placement (AFP) has become a popular processing technique for composites in the aerospace industry, due to its ability to place prepregs or tapes precisely in the exact position when complex parts are being manufactured. This paper presents the design, analysis, and manufacture of an AFP mandrel for composite aircraft fuselage skin fabrication. According to the design requirements, an AFP mandrel was developed and a numerical study was performed through the finite element method. Linear static load analyses were performed considering the mandrel structure self-weight and a 2940 N load from the AFP machine head. Modal analysis was also performed to determine the mandrel's natural frequencies. These analyses confirmed that the proposed mandrel meets the design requirements. A prototype mandrel was then manufactured and used to fabricate a composite fuselage skin. Material load tests were conducted on the AFP fuselage skin curved laminates, equivalent flat AFP, and hand layup laminates. The flat AFP and hand layup laminates showed almost identical strength results in tension and compression. Compared to hand layup, the flat AFP laminate modulus was 5.2% higher in tension and 12.6% lower in compression. The AFP curved laminates had an ultimate compressive strength of 1.6% to 8.7% higher than flat laminates. The FEM simulation predicted strengths were 4% higher in tension and 11% higher in compression than the flat laminate test results.