• Title/Summary/Keyword: composit member

Search Result 7, Processing Time 0.022 seconds

Lateral Drift Optimal Control Technique of Shear Wall-Frame Structure System using Composite Member (합성부재를 이용한 전단벽-골조 구조시스템의 횡변위 최적제어방안)

  • Lee, Han-Joo;Jung, Sung-Jin;Kim, Ho-Soo
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.191-198
    • /
    • 2005
  • The effective stiffness-based optimal technique to control quantitatively lateral drift for shear wall-Frame structure system using composit member subject to lateral loads is presented. Also, displacement sensitivity depending on behavior characteristics of structure system is established and approximation concept that preserves the generality of the mathematical programming is introduced. Finally, the resizing technique of shear wall, frame and composite member is developed and the example of 20 story framework is presented to illustrate the features of the quantitative lateral drift control technique.

  • PDF

A Study on Stiffness-based Optimal Design of Tall Plane Frameworks using Composite Member (합성부재를 이용한 고층평면골조의 강성최적설계에 관한 연구)

  • Kim, Ho-Soo;Lee, Han-Joo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.3 s.13
    • /
    • pp.77-84
    • /
    • 2004
  • This study presents an effective stiffness-based optimal technique to control quantitatively lateral drift for tall frameworks using composit member subject to lateral loads. To this end, displacement sensitivity depending on behavior characteristics of tall frameworks is established and approximation concept that preserves the generality of the mathematical programming and can efficiently solve large scale problems is introduced. Specifically, under the 'constant-shape' assumption, resizing techniqe of composite member is developed. Two types of 50 story frameworks are presented to illustrate the features of the quantitative lateral drift control technique proposed in this study.

  • PDF

Study on mechanical behavioral characteristics of the curved FRP-concrete composite member for utilization as a tunnel lining structure (터널 라이닝 구조체로서 활용을 위한 곡면 FRP-콘크리트 복합부재의 역학적 거동특성 분석 연구)

  • Lee, Gyu-Phil;Shin, Hyu-Soung;Kim, Seung-Han
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.2
    • /
    • pp.149-158
    • /
    • 2011
  • Utilization of the fiber reinforced polymer (FRP) material has been increased as an alternative in a bid to supplement the problems with general construction materials such as long-term problems corrosion, etc. However, there are still many problems in using a linear-shaped FRP material for a tunnel lining structure which has arch-shape in general. In this study, the loading tests for the FRP-concrete composite member was carried out to evaluate their applicability as a tunnel reinforcement material, which are based on the results from preliminary numerical studies for identifying the behavioral characteristics of FRP-concrete composite member. Moreover, numerical analysis under the same condition as applied in the loading tests was again conducted for analysis of mechanical behavior of the composite member. As a result of the load test and numerical analysis, it appears that the FRP-concrete composite member is greatly subject to shear movement caused by bending tension acting on the interface between two constituent members.

An Experimental Study on the Fire Resistance of Composite Truss Beam (합성트러스 보의 내화성능에 관한 실험적 연구)

  • Park, Won-Sup;Kim, Heung-Youl;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.135-141
    • /
    • 2009
  • The composite truss has been widely used for tall buildings and long-span structures in North America. As compared with other similar structures, it has merits such as reduction of construction period, low span/depth ratio, low dead weight and so on. It has the most effective trait for structures with long span of 12~18m. After collapse of WTC, the fire resistance behaviors of structures have been actively conducted under various fire conditions in several country. This study showed that the surface temperature of steel member in the composit truss beam was reached to $700^{\circ}C$ under the fire condition of a short time. Under the same condition, the temperature in concrete was within $200^{\circ}C$. The composit truss beam with 20mm bracing was collapsed by rapid deflection after about 3minutes. However, the beams with 25mm, 35mm, and 45mm bracing were not collapsed, even though those were reached to deflection standard of L/20 within 15minutes.

A Study on Relations between Shape Factor and Temperature History of Steel of Composit Beam in Standard Fire under Same Thickness Condition of Spray-type Fire Resistant Materials (동일 내화뿜칠 피복조건에서 표준화재에 노출된 합성보의 강재 온도이력 및 단면형상계수와의 관계)

  • Yeo, In-Hwan;Cho, Kyung-Suk;Cho, Bum-Yean
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.72-77
    • /
    • 2012
  • When the concrete and steel combined composite beam is exposed to high temperature, concrete could delay temperature rising of steel by covering or increase heat capacity of structural member. For becoming of structural reinforcing by unification between materials, fire resistance rate of composite beam would be higher than simple steel beam. The temperature rising of exposed steel of composite beam is directly related with section shape and exposure length of steel. In this study, fire resistant tests were carried out for composite beams and steel beam with same thickness of spray-type fire resistant materials in standard fire, and after that, temperature histories were analysed and compared with shape factor. The correlation between steel temperature and shape factor was showed very high. This result suggests that if it can be predict the comparative advantage of member by factor which cause the performance enhancement, it could be conclude that an Standard Accreditation method can be adjust to members without indivisual certifiicate of accreditation.

Study on mechanical behavioral characteristics of FRP-concrete composit member considering interface element between FRP and concrete (계면특성을 고려한 FRP와 콘크리트 복합부재의 역학적 거동특성 분석 연구)

  • Lee, Gyu-Phil;Park, Young-Taek;Hwang, Jae-Hong;Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.6
    • /
    • pp.595-606
    • /
    • 2012
  • Utilization of fiber reinforced polymer(FRP) material has been increased to solve construction material problems such as corrosion, etc. However, there are still many problems in using a linear-shaped FRP material for a tunnel structure with curved section. In this study, the loading tests were performed on the curved FRP-concrete composite material to evaluate its behavior as tunnel support. These tests were based on the result from preliminary numerical analysis on FRP-concrete composite material. Also, additional numerical analysis considering interface characteristics between FRP and cement-concrete was conducted to compare the result of loading test on FRP-concrete composite material. From the results of the loading test and numerical analysis, the analysis method suggested from this study is reasonable to evaluate the mechanical behavior of FRP-concrete composite material.

A numerical study on feasibility of the circled fiber reinforced polymer (FRP) panel for a tunnel lining structure (터널 라이닝 구조체로서 곡면 섬유강화 복합재료의 적용성 검토를 위한 수치해석적 연구)

  • Lee, Gyu-Phil;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.6
    • /
    • pp.451-461
    • /
    • 2010
  • Utilization of the fiber reinforced polymer (FRP) material has been enlarged as a substitution material to the general construction materials having certain long-term problems such as corrosion, etc. However, it could be difficult to apply the FRP material, which has a linear shape generally, to an arch-shaped tunnel structure. Therefore, an attempt has been made in this study to develop a device to form a designed cross section of FRP material by pulling out with a curvature. A sample of the circled FRP product was successfully produced and then the sample has been tested to identify its physical characteristics. Then, intensive feasibility studies on the circled FRP panel to be used for a tunnel lining structure have been carried out by numerical analyses. As a result, it appears that the new circled FRP-concrete composite panel has a high capability to be used for a tunnel lining material without any structural problem.