• Title/Summary/Keyword: composed material model

Search Result 270, Processing Time 0.027 seconds

The Behavior of Effluent Discharged from the Confined Dumping Facility (제한투기시설에서 배출되는 여수의 거동)

  • 정대득;이중우
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.429-439
    • /
    • 2000
  • The primary purpose of dredging work is to maintain navigational readiness and to increase environmental amenity. Therefore the dredging project, which is composed of excavating, removing, transporting and storing or dumping dredged material, must be carefully managed to insure that dredging works are completed in a cost-effective and environmentally safe method. The most important point in dumping operations is evaluating and decreasing the impacts of dumping works at the dumping area. One of the most effective method for this purpose is using the schematic process composed of the sophisticate plan, precise work and predicting/reducing the impacts based on an numerical model being closely linked with field observation. In this study, a numerical model is used to predict the spatial transport and fate of the effluent discharged from the confined dumping facility(CDF) located at a coastal area. To achive this purpose, numerical models were used for reappearing the tidal current of concerned area. These models were then applied to Mokpo harbpr where capital dredging and maintenance dredging are being conducted simultaneously and the CDF is under construction. In series of model case study, we found that the effluent discharged from CDF was governed by the receiving water condition and outfall geometry, so that limit of near-field was 14∼500 meter down stream and 4∼150 meter in transverse direction. dilution ranged from 1.1 to 8.2 on the cases. Long-term diffusion characteristics was governed by the dilution rate during near-field behavior, ambient conditions and CDF operation modes.

  • PDF

Estimation of Failure Probability Using Boundary Conditions of Failure Pressure Model for Buried Pipelines (파손압력모델의 경계조건을 이용한 매설배관의 파손확률 평가)

  • Lee, Ouk-Sub;Kim, Eui-Sang;Kim, Dong-Hyeok
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.310-315
    • /
    • 2003
  • This paper presents the effect of boundary condition of failure pressure model for buried pipelines on failure prediction by using a failure probability model. The first order Taylor series expansion of the limit state function is used in order to estimate the probability of failure associated with various corrosion defects for long exposure periods in years. A failure pressure model based on a failure function composed of failure pressure and operation pressure is adopted for the assessment of pipeline failure. The effects of random variables such as defect depth, pipe diameter, defect length, fluid pressure, corrosion rate, material yield stress, material ultimate tensile strength and pipe thickness on the failure probability of the buried pipelines are systematically studied by using a failure probability model for the corrosion pipeline.

  • PDF

A FE-simulation for forming process of semi-solid material considering induction heating (유도가열을 고려한 반용융 재료의 성형공정에 관한 유한요소 시뮬레이션)

  • 최원도;고대철;김병민;최재찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.110-114
    • /
    • 1996
  • The objective of this study is to consider the induction heating process and to develop the finite element program to analyze the behaviour of semi-solid materials. The semi-solid material is assumed to be composed of solid region as rigid visco-plastic model and liquid region following Darcy's law. Induction heating process is analyzed using finite element software, ANSYS, and also the behaviour of a semi-solid material considering induction heating is analyzed using developed finite element program.

  • PDF

A Study on Squeal Noise Simulation considering the Friction Material Property Changes according to Temperature and Pressure in an Automotive Brake Corner Module (차량용 브레이크 코너 모듈에서 마찰재의 온도와 압력에 따른 물성치 변화를 고려한 스퀼 소음 해석 연구)

  • Cho, Hojoon;Kim, Jeong-Tae;Chae, Ho-Joong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.546-552
    • /
    • 2012
  • This paper is a study on squeal noise simulation under the consideration of temperature and pressure dependent material properties of friction material. For this, data of pressure and temperature dependent material properties of lining is achieved by using lining data base and exponential curve fit. Complex eigenvalue analysis is performed for predicting squeal noise frequency and instability and chassis dynamo test is performed for achieving squeal noise frequency, sound pressure level, occurrence temperature & pressure. Initial multi models are composed for considering complex interface conditions such as pad ear-clip, piston-housing and guide pin-torque member. The simulation result of base models is compared with the test result. Squeal noise simulation under the consideration of temperature and pressure dependent material properties of friction material is performed and analyzed using multi models. And additional condition is disc material property variation. Entire simulation conditions are combined and analyzed. Finally, this paper proposes direction of the warm squeal noise model.

  • PDF

Finite Element Analysis of the Effects of Process and Material Parameters on the LVDT Output Characteristics (LVDT의 출력 특성에 미치는 공정 및 재료 변수의 영향에 관한 유한요소해석)

  • Yang, Young-Soo;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.11-19
    • /
    • 2021
  • Linear variable differential transformer (LVDT) is a displacement sensor and is commonly used owing to its wide measurement range, excellent linearity, high sensitivity, and precision. To improve the output characteristics of LVDT, a few studies have been conducted to analyze the output using a theoretical method or a finite element method. However, the material properties of the core and the electromagnetic force acting on the core were not considered in the previous studies. In this study, a finite element analysis model was proposed considering the characteristics of the LVDT composed of coils, core, magnetic shell and electric circuit, and the core displacement. Using the proposed model, changes in sensitivity and linear region of LVDT according to changes in process and material parameters were analyzed. The outputs of the LVDT model were compared with those of the theoretical analysis, and then, the proposed analysis model was validated. When the electrical conductivity of the core was high and the relative magnetic permeability was low, the decrease in sensitivity was large. Additionally, an increase in the frequency of the power led to further decrease in sensitivity. The electromagnetic force applied on the core increased as the voltage increased, the frequency decreased, and the core displacement increased.

Thermal conductivity prediction model for compacted bentonites considering temperature variations

  • Yoon, Seok;Kim, Min-Jun;Park, Seunghun;Kim, Geon-Young
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3359-3366
    • /
    • 2021
  • An engineered barrier system (EBS) for the deep geological disposal of high-level radioactive waste (HLW) is composed of a disposal canister, buffer material, gap-filling material, and backfill material. As the buffer fills the empty space between the disposal canisters and the near-field rock mass, heat energy from the canisters is released to the surrounding buffer material. It is vital that this heat energy is rapidly dissipated to the near-field rock mass, and thus the thermal conductivity of the buffer is a key parameter to consider when evaluating the safety of the overall disposal system. Therefore, to take into consideration the sizeable amount of heat being released from such canisters, this study investigated the thermal conductivity of Korean compacted bentonites and its variation within a temperature range of 25 ℃ to 80-90 ℃. As a result, thermal conductivity increased by 5-20% as the temperature increased. Furthermore, temperature had a greater effect under higher degrees of saturation and a lower impact under higher dry densities. This study also conducted a regression analysis with 147 sets of data to estimate the thermal conductivity of the compacted bentonite considering the initial dry density, water content, and variations in temperature. Furthermore, the Kriging method was adopted to establish an uncertainty metamodel of thermal conductivity to verify the regression model. The R2 value of the regression model was 0.925, and the regression model and metamodel showed similar results.

Numerical Prediction of elastic Material Properties of Composites by A Constrained Nonlinear Optimization Method (구속적 비선형 최적화에 의한 합성재료 탄성물성치의 수치적 예측)

  • 신수봉;고현무
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.225-232
    • /
    • 1997
  • Material properties of a new composite composed of components with known material properties are usually investigated through experiments. Elastic modulus and Poisson's ratio are measured at various volume fractions of mixed components and utilized as the base information on an analytical model for predicting the mechanical behaviors of a structure constructed by the composite. Elastic material properties of a composite at various volume fractions are numerically estimated by minimizing the error between the static displacements computed from a model for the composite and those computed from a model of homogeneous and isotropic material. A finite element model for a composite is proposed to distribute different types of material components easily into the model depending on the volume fraction. Then, the material properties of a composite filled with solid mircospheres are predicted numerically through a sample study and the estimated results are compared with experimental results and some theoretical equations.

  • PDF

Vibration Analysis of Separation Screen for a Recycling of Construction Wastes (건설폐기물의 재활용을 위한 분리스크린의 진동해석)

  • Kim, K.K.;Kim, M.S.;Son, K.;Kim, K.H.;Moon, B.Y.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1057-1062
    • /
    • 2007
  • The purpose of this study is to find out design parameters of vibrating screen, such as particles motion, specific gravity, shape, and kinetic friction. In order to approach this problem, four materials of construction wastes, wood, styrofoam, concrete, and sand are used for dynamic modeling. To present friction between the particles material and tilt plates material, these particles model is applied in order to verify effectively. Generally, the vibrating screen is composed of three assemblies such as screen, wastes guide, supported of screen. This model regards vibrator as system of screen fixed tilt plates. The model is analyzed to present what kind of particles motion while the system is vibrating. and this vibration system has been implemented in a ADAMS dynamaic program. This modeling is consist of dynamic model separation state on particle size. This study make good technique to verify in theory.

  • PDF

Construction Monitoring of Geotextile Tube at Young-Jin Bay and Stability Analysis by Hydraulic Model Tests (영진만 지오텍스타일 튜브의 현장 시공계측 및 수리모형시험을 통한 안정성분석)

  • 신은철;오영인;이명호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.549-556
    • /
    • 2002
  • Geotextile tubes hydraulically or mechanically filled with dredged materials have been applied in hydraulic and coastal engineering in recent years(shore protection structure, detached breakwater, groins and jetty). It can also be used to isolate contaminated material from harbor, detention basin dredging, and to use this unit as dikes for reclamation work. Recently, new preliminary design criteria supported by model and prototype tests, and some stability analysis calculations have been studied. The stability analysis of geotextile tube is composed geotechnical and hydrodynamic analysis. The stability check points are sliding failure, overturning, bearing capacity failure against the wave attack. In this paper presented the construction procedure and in-situ measurement(properties of filling material, effective height variation, stress variation at geotextile tube bottom) of geotextile tube at Young-Jin Bay and stability analysis by theoretical method and hydraulic model tests

  • PDF

Determination of representative volume element in concrete under tensile deformation

  • Skarzyski, L.;Tejchman, J.
    • Computers and Concrete
    • /
    • v.9 no.1
    • /
    • pp.35-50
    • /
    • 2012
  • The 2D representative volume element (RVE) for softening quasi-brittle materials like concrete is determined. Two alternative methods are presented to determine a size of RVE in concrete subjected to uniaxial tension by taking into account strain localization. Concrete is described as a heterogeneous three-phase material composed of aggregate, cement matrix and bond. The plane strain FE calculations of strain localization at meso-scale are carried out with an isotropic damage model with non-local softening.