• Title/Summary/Keyword: component variability

Search Result 212, Processing Time 0.019 seconds

Mammalian Reproduction and Pheromones (포유동물의 생식과 페로몬)

  • Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.10 no.3
    • /
    • pp.159-168
    • /
    • 2006
  • Rodents and many other mammals have two chemosensory systems that mediate responses to pheromones, the main and accessory olfactory system, MOS and AOS, respectively. The chemosensory neurons associated with the MOS are located in the main olfactory epithelium, while those associated with the AOS are located in the vomeronasal organ(VNO). Pheromonal odorants access the lumen of the VNO via canals in the roof of the mouth, and are largely thought to be nonvolatile. The main pheromone receptor proteins consist of two superfamilies, V1Rs and V2Rs, that are structurally distinct and unrelated to the olfactory receptors expressed in the main olfactory epithelium. These two type of receptors are seven transmembrane domain G-protein coupled proteins(V1R with $G_{{\alpha}i2}$, V2R with $G_{0\;{\alpha}}$). V2Rs are co-expressed with nonclassical MHC Ib genes(M10 and other 8 M1 family proteins). Other important molecular component of VNO neuron is a TrpC2, a cation channel protein of transient receptor potential(TRP) family and thought to have a crucial role in signal transduction. There are four types of pheromones in mammalian chemical communication - primers, signalers, modulators and releasers. Responses to these chemosignals can vary substantially within and between individuals. This variability can stem from the modulating effects of steroid hormones and/or non-steroid factors such as neurotransmitters on olfactory processing. Such modulation frequently augments or facilitates the effects that prevailing social and environmental conditions have on the reproductive axis. The best example is the pregnancy block effect(Bruce effect), caused by testosterone-dependent major urinary proteins(MUPs) in male mouse urine. Intriguingly, mouse GnRH neurons receive pheromone signals from both odor and pheromone relays in the brain and may also receive common odor signals. Though it is quite controversial, recent studies reveal a complex interplay between reproduction and other functions in which GnRH neurons appear to integrate information from multiple sources and modulate a variety of brain functions.

  • PDF

Effect of Starvation on Some Parameters in Rhynchocypris oxycephalus (Sauvage and Dabry): A Review (버들치, Rhynchocypris oxycephalus (Sauvage and Dabry) 기아시 일부형질에서의 효과: 개관)

  • Park In-Seok
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.3
    • /
    • pp.351-368
    • /
    • 2004
  • Following the previous experiments, a starvation experiment was conducted to determine the influence of feeding and starvation on the histological and biochemical changes, the morphormetric changes in the sectioned body and the morphometric changes in Rhynchocypris oxycephalus (Sauvage and Dabry). The influence of starvation on nutritional conditions of the histological changes of hepatocyte and intestinal epithelium as hepatosmatic index (HSI), protein, RNA and DNA concentrations of liver in R. oxycephalus was tested. Although the starved group showed higher concentrations of protein, DNA and RNA than the fed group, food deprivation resulted in a decrease in the HSI, hepatocyte nucleus size and nuclear height of the intestinal epithelium. The RNA - DNA ratio appears to be a useful index of nutritional status in R. oxycephalus and may be useful for determining if R. oxycephalus is in a period of rapid or slow growth at the time of sampling. Additionally, the data have been interpreted in detail and some biologically important relationships discussed. The effects of starvation on the morphometrical changes in sectioned body traits, condition factor, viscera index and dressing percentage were determined for evaluating nutritional conditions of R. oxycephalus. Starvation for nine weeks resulted in a decrease in most sectioned traits as well as in condition factor and viscera index (P<0.05). These findings suggest that nutritional parameters used in this study appear to be a useful index for nutritional status in this species. The data has been interpreted in detail and some important body sectioned values of interest to commercial growers discussed. A 75-day study was conducted to determine the effect of starvation on classical and truss parameters in R. oxycephalus. Truss dimensions of almost the entire head and trunk region as well as the abdomen were increased significantly through feeding or starvation (P<0.05). Truss dimensions of the caudal region generally decreased through feeding or starvation, particularly those dimensions at the hind part of the trunk. There were some significant decreases in classical dimensions of the head region during feeding, in relation to body depth characteristics in the trunk and caudal region during starvation, whereas there was only one decreasing classical dimension in the caudal region during feeding. The results of this study indicate that application of the truss network as a character set enforces classical coverage across the body form, discrimination among experimental groups thus being enhanced. Considering that the dimension of the lower part of the head and some truss and classical dimensions were least affected by feeding and starvation, these dimensions may then be useful as a taxonomical indicator to discriminate the species of Rhynchocypris sp. The value of trunk region dimensions with a large component of body depth in R. oxycephalus is most likely to be compromised by variability related to differences in feeding regimes of fish in different habitats.