• Title/Summary/Keyword: complex structure

Search Result 4,578, Processing Time 0.031 seconds

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 OF A COMPLEX PROJECTIVE SPACE IN TERMS OF THE JACOBI OPERATOR

  • HER, JONG-IM;KI, U-HANG;LEE, SEONG-BAEK
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.93-119
    • /
    • 2005
  • In this paper, we characterize some semi-invariant sub-manifolds of codimension 3 with almost contact metric structure ($\phi$, $\xi$, g) in a complex projective space $CP^{n+1}$ in terms of the structure tensor $\phi$, the Ricci tensor S and the Jacobi operator $R_\xi$ with respect to the structure vector $\xi$.

Structure Refinement of $SrAl_{12}O_{19}$ Magnetoplumbite Using Energy Minimization Techniques

  • Park, Jae-Gwan;A.N. Cormack
    • Korean Journal of Crystallography
    • /
    • v.11 no.3
    • /
    • pp.173-175
    • /
    • 2000
  • Computational technique, based on the minimization of the crystal energy with respect to atomic coordinates, are shown to reproduce successfully complex crystal structure, in this case, strontium hexaaluminate magnetoplumbite, SrAl/sub 12/O/sub 19/. The experimental crystal structure and symmetry of the complex material is well reproduced with our potential models and some crystal physical properties are calculated.

  • PDF

Certain Characterization of Real Hypersurfaces of type A in a Nonflat Complex Space Form

  • Ki, U-Hang
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.181-190
    • /
    • 2021
  • Let M be a real hypersurface with almost contact metric structure (ϕ, ��, η, g) in a nonflat complex space form Mn(c). We denote S and R�� by the Ricci tensor of M and by the structure Jacobi operator with respect to the vector field �� respectively. In this paper, we prove that M is a Hopf hypersurface of type A in Mn(c) if it satisfies R��ϕ = ϕR�� and at the same time R��(Sϕ - ϕS) = 0.

On characterizations of real hypersurfaces of type B in a complex hyperbolic space

  • Ahn, Seong-Soo;Suh, Young-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.471-482
    • /
    • 1995
  • A complex n-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called a comples space form, which is denoted by $M_n(c)$. A complete and simply connected complex space form consists of a complex projective space $P_nC$, a complex Euclidean space $C^n$ or a complex hyperbolic space $H_nC$, according as c > 0, c = 0 or c < 0. The induced almost contact metric structure of a real hypersurface M of $M_n(c)$ is denoted by $(\phi, \zeta, \eta, g)$.

  • PDF

Development of deep learning structure for complex microbial incubator applying deep learning prediction result information (딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조 개발)

  • Hong-Jik Kim;Won-Bog Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.116-121
    • /
    • 2023
  • In this paper, we develop a deep learning structure for a complex microbial incubator that applies deep learning prediction result information. The proposed complex microbial incubator consists of pre-processing of complex microbial data, conversion of complex microbial data structure, design of deep learning network, learning of the designed deep learning network, and GUI development applied to the prototype. In the complex microbial data preprocessing, one-hot encoding is performed on the amount of molasses, nutrients, plant extract, salt, etc. required for microbial culture, and the maximum-minimum normalization method for the pH concentration measured as a result of the culture and the number of microbial cells to preprocess the data. In the complex microbial data structure conversion, the preprocessed data is converted into a graph structure by connecting the water temperature and the number of microbial cells, and then expressed as an adjacency matrix and attribute information to be used as input data for a deep learning network. In deep learning network design, complex microbial data is learned by designing a graph convolutional network specialized for graph structures. The designed deep learning network uses a cosine loss function to proceed with learning in the direction of minimizing the error that occurs during learning. GUI development applied to the prototype shows the target pH concentration (3.8 or less) and the number of cells (108 or more) of complex microorganisms in an order suitable for culturing according to the water temperature selected by the user. In order to evaluate the performance of the proposed microbial incubator, the results of experiments conducted by authorized testing institutes showed that the average pH was 3.7 and the number of cells of complex microorganisms was 1.7 × 108. Therefore, the effectiveness of the deep learning structure for the complex microbial incubator applying the deep learning prediction result information proposed in this paper was proven.

Control of a building complex with Magneto-Rheological Dampers and Tuned Mass Damper

  • Amini, F.;Doroudi, R.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.2
    • /
    • pp.181-195
    • /
    • 2010
  • Coupled building control is a viable method to protect tall buildings from seismic excitation. In this study, the semi-active control of a building complex is investigated for mitigating seismic responses. The building complex is formed of one main building and one podium structure connected through Magneto-Rheological (MR) Dampers and Tuned Mass Damper. The conventional semi-active control techniques require a primary controller as a reference to determine the desired control force, and modulate the input voltage of the MR damper by comparing the desired control force. The fuzzy logic directly determines the input voltage of an MR damper from the response of the MR damper. The control performance of the proposed fuzzy control technique for the MR damper is evaluated for the control problem of a seismically-excited building complex. In this paper, a building complex that include a 14-story main building and an 8-story podium structure is applied as a numerical example to demonstrate the effectiveness of semi-active control with Magneto-Rheological dampers and its comparison with the passive control with the Tuned Mass Damper and two uncoupled buildings and hybrid semi-active control including the Tuned Mass Damper and Magneto-Rheological dampers while they are subject to the earthquake excitation. The numerical results show that semi-active control and hybrid semi-active control can significantly mitigate the seismic responses of both buildings, such as displacement and shear force responses, and fuzzy control technique can effectively mitigate the seismic response of the building complex.

Synthesis, spectral, thermal, structural study and theoretical treatment of new complexes of mannich base with Ni(II) and study of cytotoxicity effect on (Hepa-2) cell line and antimicrobial activity

  • Omar H. Al-Obaidi
    • Analytical Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.70-79
    • /
    • 2023
  • The synthesis of the Mannich base as a ligand (L) N-(morpholino (phenyl) methyl) acetamide is the subject of this study. Elemental analyses, FT-IR spectra, UV-vis, 1H-NMR, and magnetic measurements were used to confirm the synthesis of the [Ni(L)2]Cl2 complex, thermal analysis (TG/DTG), atomic absorption, and scanning, and structurally explained as electron microscopy (SEM), and X-ray powder diffraction (XRD) methods. The melting point of the complex and its molar conductivity were also measured. The suggested geometries of the complexes formed have a tetrahedral structure, according to the data acquired using various techniques. Theoretical approaches to the complex formation have been investigated. For molecular mechanics and semi-empirical calculations, the HYPERCHEM6 program had been used. The effect of the novel Ni(II) complex on the cancer cell Hepa-2 (human hepatocellular ademocarcinoma), that is the human laryngeal cancer, was studied. It has been found that these ligand and complex have potent effects on the cancer cell. The antibacterial activity of the free ligand and its complex was evaluated against two kinds of human pathogenic bacteria. The first category is Gram-positive (Staphylococcus aureas, epiderimids), whereas the second group is Gram-negative (Psedamonas aeruginosa, Escherichia coli) (from the diffusion method). Finally, it was discovered that various chemicals had varied growth-inhibiting effects on bacteria.

Structural basis of Ca2+ uptake by mitochondrial calcium uniporter in mitochondria: a brief review

  • Jiho, Yoo
    • BMB Reports
    • /
    • v.55 no.11
    • /
    • pp.528-534
    • /
    • 2022
  • Mitochondria are cellular organelles that perform various functions within cells. They are responsible for ATP production, cell-signal regulation, autophagy, and cell apoptosis. Because the mitochondrial proteins that perform these functions need Ca2+ ions for their activity, mitochondria have ion channels to selectively uptake Ca2+ ions from the cytoplasm. The ion channel known to play the most important role in the Ca2+ uptake in mitochondria is the mitochondrial calcium uniporter (MCU) holo-complex located in the inner mitochondrial membrane (IMM). This ion channel complex exists in the form of a complex consisting of the pore-forming protein through which the Ca2+ ions are transported into the mitochondrial matrix, and the auxiliary protein involved in regulating the activity of the Ca2+ uptake by the MCU holo-complex. Studies of this MCU holo-complex have long been conducted, but we didn't know in detail how mitochondria uptake Ca2+ ions through this ion channel complex or how the activity of this ion channel complex is regulated. Recently, the protein structure of the MCU holo-complex was identified, enabling the mechanism of Ca2+ uptake and its regulation by the MCU holo-complex to be confirmed. In this review, I will introduce the mechanism of action of the MCU holo-complex at the molecular level based on the Cryo-EM structure of the MCU holo-complex to help understand how mitochondria uptake the necessary Ca2+ ions through the MCU holo-complex and how these Ca2+ uptake mechanisms are regulated.