• 제목/요약/키워드: complex structural control

검색결과 193건 처리시간 0.032초

과일 소비에 미치는 음식 관여도의 영향을 매개하는 요인 평가 (Measuring the Factors Mediating the Effect of Food Involvement on Fruit Consumption)

  • 강종헌;정항진
    • 동아시아식생활학회지
    • /
    • 제18권2호
    • /
    • pp.172-180
    • /
    • 2008
  • The purpose of this study was to measure the causal relationships among food involvement, health, mood, convenience, sensory appeal, weight control, and fruit consumption. A total of 290 questionnaires were completed. A structural equation model was used to measure the causal effects of the constructs, and the structural analysis results for the data indicated an excellent model fit. The effects of food involvement on health, mood, convenience, sensory appeal, weight control, and fruit consumption were statistically significant. As expected, health, mood, and weight control had significant effects on fruit consumption. Moreover, food involvement had a significant indirect effect on fruit consumption through health, mood, convenience, sensory appeal and weight control. For the future development and testing of conceptual models that integrate the relationships among personality traits, food choice motives, and fruit consumption, this study may approach a deeper understanding of the complex relationships among fruit consumption behavior-related variables. Greater understanding of these complex relationships can improve the managerial diagnosis of the problem and opportunities for different marketing strategies, including fruit production and fruit product development and marketing communications.

  • PDF

Decentralized Observer-Based Output-Feedback Formation Control of Multiple Unmanned Underwater Vehicles

  • Moon, Ji Hyun;Lee, Ho Jae
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.493-500
    • /
    • 2018
  • This paper addresses a decentralized observer-based output-feedback formation control problem for multiple unmanned underwater vehicles (UUVs). The complex nonlinear model for a UUV is feedback-linearized. It is assumed that each UUV in the formation exploits only the information regarding itself and the immediate predecessor, which imposes structural constraints on the formation controller gain matrices. The design condition is presented as a two-stage linear matrix inequalities problem. The synthesized controller demonstrates its own advantages through a numerical example.

평판에서 방사되는 소음의 능동구조소음제어를 위한 변환기의 위치결정 (The Determination of Transducer Locations for Active Structural Acoustic Control of the Radiated Sound from Vibrating Plate)

  • 김흥섭;홍진석;이충휘;오재응
    • 한국소음진동공학회논문집
    • /
    • 제12권9호
    • /
    • pp.694-701
    • /
    • 2002
  • In this paper, through the study on locations of structural transducers for active control of the radiated sound from the vibrating plate, the active structural acoustic control (ASAC) system is proposed. And, for the evaluation of the proposed location, the experiment of the active structural acoustic control is implemented using the multi-channel filtered-x LMS algorithm and an additional filter (Acoustic Prediction Filter) to estimate the radiated sound using the acceleration signals of the plate. The structural transducers are piezoceramic actuator (PZT) and accelerometer. PZT is used as an actuator to reduce the vibration and the radiated sound. To maximize the control performance, each PZT actuator is located at the position that has the largest control sensitivity of the plate bending moment in the direction of x and y coordinates and the optimal PZT location is validated experimentally. Also, to find the acoustic prediction filter accurately, two accelerometers are located at the positions that have the largest radiation efficiencies of the plate, and the proposed locations are validated by simulation using the Rayleigh integral. The multi-channel filtered-x LMS algorithm is introduced to control a complex 2-D structural vibration mode. Finding the locations of structural transducers for active structural acoustic control of the radiated sound, the active structural acoustic control (ASAC) system can be presented and validated by experiments using a real time control system.

Efficient optimal design of passive structural control applied to isolator design

  • Kamalzare, Mahmoud;Johnson, Erik A.;Wojtkiewicz, Steven F.
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.847-862
    • /
    • 2015
  • Typical base isolated buildings are designed so that the superstructure remains elastic in design-level earthquakes, though the isolation layer is often quite nonlinear using, e.g., hysteretic elements such as lead-rubber bearings and friction pendulum bearings. Similarly, other well-performing structural control systems keep the structure within the linear range except during the most extreme of excitations. Design optimization of these isolators or other structural control systems requires computationally-expensive response simulations of the (mostly or fully) linear structural system with the nonlinear structural control devices. Standard nonlinear structural analysis algorithms ignore the localized nature of these nonlinearities when computing responses. This paper proposes an approach for the computationally-efficient optimal design of passive isolators by extending a methodology previously developed by the authors for accelerating the response calculation of mostly linear systems with local features (linear or nonlinear, deterministic or random). The methodology is explained and applied to a numerical example of a base isolated building with a hysteretic isolation layer. The computational efficiency of the proposed approach is shown to be significant for this simple problem, and is expected to be even more dramatic for more complex systems.

유한요소 구조해석 프로그램의 전후처리 통합 운영 시스템을 위한 객체지향적 모델 (Object-Oriented Models for Integrated Processing System of Finite Element Structural Analysis Program)

  • 서진국;송준엽;신영식;권영봉
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.17-24
    • /
    • 1994
  • The pre- and post-processor for finite element structural analysis considering the user-friendly device are developed by using GUI. These can be used on WINDOWS' environment which is realized the multi-tasking and the concurrency by object-oriented paradigm. They are designed to control integratedly the pre-processing, execution and the post-processing of the finite element structural analysis program on multiple windows. These object-oriented modeling approach can be used for complex integrated engineering systems.

  • PDF

Structural Design of High-Rise Concrete Condominium with Wall Dampers for Vibration Control

  • Tsushi, Takumi;Ogura, Fumitaka;Uekusa, Masahiro;Kake, Satoshi;Tsuchihashi, Toru;Yasuda, Masaharu;Furuta, Takuya
    • 국제초고층학회논문집
    • /
    • 제8권3호
    • /
    • pp.201-209
    • /
    • 2019
  • This paper presents a structural design of the "(Tentative Name) Toranomon Hills Residential Tower" which is currently under construction in Tokyo. The building is a reinforced concrete high-rise residential complex building with 54 stories above ground, 4 basement levels, and a building height of about 220 m. It is a requirement to provide the highest grade of residence in Japan, and in terms of the structural design, it is required to provide wide and comfortable spaces with high seismic performance. These requirements are satisfied by providing a total of 774 vibration control walls of two types. Also, to further improve the structural performance, steel fibers at the rate of 1.0vol% are provided in the ultra-high strength concrete used in the column members.

주상 복합 구조물에 적용된 중간층 면진 시스템의 성능 검토 (Control Performance Evaluation of Mid-Story Isolation System for Residence-Commerce Complex Building)

  • 박광섭;김윤태;김현수
    • 한국공간구조학회논문집
    • /
    • 제19권3호
    • /
    • pp.33-40
    • /
    • 2019
  • A seismic isolation system is one of the most effective control devices used for mitigating the structural responses due to earthquake loads. This system is generally used as a type of base isolation system for low- and mid-rise building structures. If the base isolation technique is applied to high-rise buildings, a lot of problems may be induced such as the movement of isolation bearings during severe wind loads, the stability problem of bearings under large compression forces. Therefore, a mid-story isolation system was proposed for seismic protection of high-rise buildings. Residence-commerce complex buildings in Korea have vertical irregularity because shear wall type and frame type structures are vertically connected. This problem can be also solved by the mid-story isolation system. An effective analytical method using super elements and substructures was proposed in this study. This method was used to investigate control performance of mid-story isolation system for residence-commerce complex buildings subjected to seismic loads. Based on numerical analyses, it was shown that the mid-story isolation system can effectively reduce seismic responses of residence-commerce complex tall buildings.

전기 유동유체를 함유하는 지능외팔보의 진동특성 및 제어 실험적 고찰 (Vibration Characteristics and Control of Smart Cantilever Beams Containing an Electro-Rheological Fluid An Experimental Investigation)

  • 최승복;박용군;서문석
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1649-1657
    • /
    • 1993
  • This paper reports on a proof-of-concept experimental investigation focused on evaluating the vibration characteristics and control of smart hollow cantilever beams filled with an electro-rheological(ER) fluid. The beams are considered to be of uniform viscoelastic materials and modelled as a viscously-damped harmonic oscillator. Electric field-dependent natural frequencies, loss factors and complex moduli are evaluated and compared among three different beams : two types of different volume fraction of ER fluid and one type of different particle concentration of ER fluid by weight. Modal characteristics of the beams are observed in both the absence and the presence of electric potentials. It is also shown that by constructing active control algorithm the removal of structural resonances and the suppression of tip deflection are obtained. This result provides the feasiblility of ER fluids as an active vibration control element.

Enhanced least square complex frequency method for operational modal analysis of noisy data

  • Akrami, V.;Zamani, S. Majid
    • Earthquakes and Structures
    • /
    • 제15권3호
    • /
    • pp.263-273
    • /
    • 2018
  • Operational modal analysis is being widely used in aerospace, mechanical and civil engineering. Common research fields include optimal design and rehabilitation under dynamic loads, structural health monitoring, modification and control of dynamic response and analytical model updating. In many practical cases, influence of noise contamination in the recorded data makes it difficult to identify the modal parameters accurately. In this paper, an improved frequency domain method called Enhanced Least Square Complex Frequency (eLSCF) is developed to extract modal parameters from noisy recorded data. The proposed method makes the use of pre-defined approximate mode shape vectors to refine the cross-power spectral density matrix and extract fundamental frequency for the mode of interest. The efficiency of the proposed method is illustrated using an example five story shear frame loaded by random excitation and different noise signals.

3차원 구조물의 유한요소해석 전처리에 관한 연구(기하학적 모델링을 중심으로) (A Study on the Preprocessing for Finite Element Analysis of 3-Dimensional Structures.(With Focus on Geometric Modelling))

  • 이재영;이진휴;한상기
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.40-46
    • /
    • 1990
  • This paper introduces a geometric modelling system adopted in a newly developed preprocessor for finite element analysis of three dimensional structures. The formulation is characterized by hierarchical construction of structural model which consists of control points, curves, surfaces and solids. Various surface and solid modeling schemes based on blending functions and boundary representation are systematized for finite element mesh generation. The modeling system is integrated with model synthesis and operations which facilitate modelling of complex structures.

  • PDF