• Title/Summary/Keyword: complex refueling station

Search Result 5, Processing Time 0.017 seconds

A Study on the Quantitative Risk Assessment of Hydrogen-CNG Complex Refueling Station (수소-CNG 복합충전소 정량적 위험성평가에 관한 연구)

  • Kang, Seung-Kyu;Huh, Yun-Sil
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.41-48
    • /
    • 2020
  • This study performed a quantitative risk assessment for hydrogen-CNG complex refueling stations. Individual and societal risks were calculated by deriving accident scenarios that could occur at hydrogen and CNG refueling stations and by considering the frequency of accidents occurring for each scenario. As a result of the risk assessment, societal risk levels were within the acceptable range. However, individual risk has occurred outside the allowable range in some areas. To identify and manage risk components, high risk components were discovered through risk contribution analysis. High risks at the hydrogen-CNG complex refueling station were large leakage from CNG storage containers, compressors, and control panels. The sum of these risks contributed to approximately 88% of the overall risk of the fueling station. Therefore, periodic and intensive safety management should be performed for these high-risk elements.

A Study on Analysis of Operation Data Monitoring Based on Demonstration of Hydrogen Refueling Station (수소 복합스테이션 실증기반 운영데이터 모니터링 분석 연구)

  • KIM, DONG-HWAN;PARK, SONG-HYUN;KU, YEON-JIN;KIM, PIL-JONG;HUH, YUN-SIL
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.6
    • /
    • pp.505-512
    • /
    • 2019
  • According to the "hydrogen economy roadmap" announced recently by the government, fuel cell electric vehicle diffusion and hydrogen refueling station construction are actively being carried out to prepare for the hydrogen economy era. The station will be expanded by introducing various charging station models such as hydrogen complex charging station, package, and mobile. Accordingly, the study on the safety demonstration of the charging station and related regulations should be compromised. The purpose of this study is to collect monitoring data during charging according to the distinct four seasons in Korea, and to use it as safety demonstration data by analyzing the charging status, charging rate and charging time during charging.

A Study on Safety Analysis of Stationary LPG - Mobile Hydrogen Complex Refueling Station (LPG 복합 이동식 수소충전소 안전성 분석에 관한 연구)

  • Kim, Piljong;Kang, Seungkyu;Yoo, Myoungjong;Huh, Yunsil
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.48-60
    • /
    • 2019
  • After the Paris Agreement in 2015, the government has been promoting various policies such as 'Hydrogen-Economy Roadmap(2019)' to supply hydrogen. As part of this, the government announced the goal of building 310 hydrogen refueling stations(HRS) until 2022. To this end, special case standard for the introduction of complex, packaged, and mobile hydrogen refueling stations(MHRS) have been enacted and promulgated. The MHRS has the advantage of being able to supply hydrogen to multiple regions. However, due to the movement and close distance between facilities, it is necessary to secure proper installation standards and operational safety through safety analysis. In this study, the possibility of introduction was investigated by designing a standard model and quantitative risk assessment(QRA). As a result of QRA, personal and social risk were acceptable, and the empirical test direction and implications were derived.

A Study on the Quantitative Risk Assessment of Hydrogen-LPG Combined Refueling Station (수소-LPG 복합충전소 정량적 위험성평가에 관한 연구)

  • Kang, Seung Kyu
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.29-34
    • /
    • 2019
  • In this study, a quantitative risk assessment was carried out for a hydrogen complex station. The complex fueling station to be evaluated was hydrogen-LPG, and the components of each station were analyzed and the risk was evaluated. The final risk is assessed by individual and societal risks, taking into account the impact of damage and the frequency of accidents. As a result of individual risk calculation for the hydrogen-LPG fueling station that is the subject of this study, the hydrogen-LPG type fueling station does not show the unacceptable hazardous area (> 1 × 10E-3) proposed by HSE. The level of individual risk for both the public and the worker is within acceptable limits. In societal risk assessment, the model to be interpreted shows the distribution of risks in an acceptable range(ALARP, As Low As Reasonably Practicable). To ensure improved safety, we recommend regular inspections and checks for high-risk hydrogen reservoirs, dispensers, tube trailer leaks, and LPG vapor recovery lines.

Calculation of Expected Life of Hydrogen Pressure Vessels by Fracture and Fatigue Mechanics assuming Semi-elliptical Cracks and Analysis of the Effect of Thickness and Radius (반타원형 균열을 가정한 파괴 및 피로역학에 의한 수소 압력용기의 예상 수명 계산과 두께와 내경이 미치는 영향 분석)

  • Kim, Jeong Hwan;Lee, Hwa Young;Lee, Min-Kyung;Lee, Jae-Hun;Lyu, Geunjun
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.53-65
    • /
    • 2021
  • While the hydrogen refueling station is rapidly expanded and installed, the safety inspection of the hydrogen pressure vessel in the station should be very important. Of these, according to ASME, hydrogen embrittlement tests must be performed for hydrogen vessel that store hydrogen above a certain pressure. The main test method for hydrogen embrittlement inspection is to carry out fracture tests and fatigue fracture tests in a high pressure hydrogen atmosphere, which allows the durability limit of the pressure vessel to be measured and the endurable limit to be determined in the hydrogen atmosphere. In detail, the critical crack depth can be calculated by the stress intensity factor(K), and the service life can be determined by da/dN (fatigue growth rate). API579-1/ ASME FFS-1 part 9 exemplifies the calculation method according to the mode of crack-like flaws, but for various shapes such as plates and cylinders, there are about 55 modes according to the shape and location of the crack. Due to the fairly complex formula, it is not easily accessible. In this study, we will show you how to calculate fracture mechanics numerically via Excel and VBA. In addition, this was applied to analyze the effects of the thickness and inner diameter of the pressure vessel on the service life.