• 제목/요약/키워드: complex motion

검색결과 814건 처리시간 0.029초

3차원 작업공간에서 보행 프리미티브를 이용한 다리형 로봇의 운동 계획 (Motion Planning for Legged Robots Using Locomotion Primitives in the 3D Workspace)

  • 김용태;김한정
    • 로봇학회논문지
    • /
    • 제2권3호
    • /
    • pp.275-281
    • /
    • 2007
  • This paper presents a motion planning strategy for legged robots using locomotion primitives in the complex 3D environments. First, we define configuration, motion primitives and locomotion primitives for legged robots. A hierarchical motion planning method based on a combination of 2.5 dimensional maps of the 3D workspace is proposed. A global navigation map is obtained using 2.5 dimensional maps such as an obstacle height map, a passage map, and a gradient map of obstacles to distinguish obstacles. A high-level path planner finds a global path from a 2D navigation map. A mid-level planner creates sub-goals that help the legged robot efficiently cope with various obstacles using only a small set of locomotion primitives that are useful for stable navigation of the robot. A local obstacle map that describes the edge or border of the obstacles is used to find the sub-goals along the global path. A low-level planner searches for a feasible sequence of locomotion primitives between sub-goals. We use heuristic algorithm in local motion planner. The proposed planning method is verified by both locomotion and soccer experiments on a small biped robot in a cluttered environment. Experiment results show an improvement in motion stability.

  • PDF

휠-다리 로봇의 장애물극복 모션 계획 및 제어 방법 (Motion Planning and Control of Wheel-legged Robot for Obstacle Crossing)

  • 정순규;원문철
    • 로봇학회논문지
    • /
    • 제17권4호
    • /
    • pp.500-507
    • /
    • 2022
  • In this study, a motion planning method based on the integer representation of contact status between wheels and the ground is proposed for planning swing motion of a 6×6 wheel-legged robot to cross large obstacles and gaps. Wheel-legged robots can drive on a flat road by wheels and overcome large obstacles by legs. Autonomously crossing large obstacles requires the robot to perform complex motion planning of multi-contacts and wheel-rolling at the same time. The lift-off and touch-down status of wheels and the trajectories of legs should be carefully planned to avoid collision between the robot body and the obstacle. To address this issue, we propose a planning method for swing motion of robot legs. It combines an integer representation of discrete contact status and a trajectory optimization based on the direct collocation method, which results in a mixed-integer nonlinear programming (MINLP) problem. The planned motion is used to control the joint angles of the articulated legs. The proposed method is verified by the MuJoCo simulation and shows that over 95% and 83% success rate when the height of vertical obstacles and the length of gaps are equal to or less than 1.68 times of the wheel radius and 1.44 times of the wheel diameter, respectively.

유연 로보트팔의 동특성 해석에 관한 연구 (A Study on the Dynamic Analysis for Flexible Robotic Arms)

  • 김창부;유영선
    • 한국정밀공학회지
    • /
    • 제10권3호
    • /
    • pp.107-116
    • /
    • 1993
  • In the design and operation of robitic arm with flexible links, the equation of motion are required to exactly model the interaction between rigid body motion and elastic motion and to be formulated efficientlyl. In this paper, the flexible link is represented by applying the D-H rigid link representation method to measure the elestic deformation. And the equations of motion of robotic arm, which are configured by the generalized coordinates of elastic and rigid degrees of freedom, are formulated from the principle of virtual power. Dynamic characteristics due to elastic deformation of each link are obtained by using F. E. M to model complex shaped link acurately and by eliminating elastic modes of higher order that do not largely affect motion to reduce the number of elastic degrees of freedom. Also presented is the result of simulation of flexible robotic arms whose joints are controlled by direct or PD control.

  • PDF

부구조화 기법을 연동한 반복적인 동적 축소법 (II) - 비비례 감쇠 구조 시스템 - (Iterated Improved Reduced System (IIRS) Method Combined with Sub-Structuring Scheme (II) - Nonclassically Damped Structural Systems -)

  • 최동수;김현기;조맹효
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.221-230
    • /
    • 2007
  • An iterated improved reduced system (IIRS) procedure combined with sub-structuring scheme for nonclassically damped structural systems is presented. For dynamic analysis of such systems, complex eigenproperties are required to incorporate properly the nonclassical damping effect. In complex structural systems, the equations of motion are written in the state space from. Thus, the number of degrees of freedom of the new equations of motion and the size of the associated eigenvalue problem required to obtain the complex eigenvalues and eigenvectors are doubled. Iterated IRS method is an efficient reduction technique because the eigenproperties obtained in each iteration step improve the condensation matrix in the next iteration step. However, although this reduction technique reduces the size of problem drastically, it is not efficient to apply this technique to a single domain finite element model with degrees of freedom over several thousands. Therefore, for a practical application of the reduction method, accompanying sub-structuring scheme is necessary. In the present study, iterated IRS method combined with sub-structuring scheme for nonclssically damped structures is developed. Numerical examples demonstrate the convergence and the efficiency of a newly developed scheme.

추나 요법을 포함한 복합 한방치료를 이용한 오스굿-슐라터 병의 치료 증례보고 (A Case Report on Osgood-Schlatter Disease Treatment Using Complex Korean Medicine Therapy Including Chuna Therapy)

  • 이지원;고연석;주민수
    • 척추신경추나의학회지
    • /
    • 제17권2호
    • /
    • pp.51-62
    • /
    • 2022
  • Objectives This case study aimed to investigate the effect of complex Korean medicine therapy and fascia Chuna therapy on Osgood-Schlatter disease. Methods Hospitalization treatment was performed on a 13-year-old Osgood-Schlatter patient who visited Woosuk University Korean Medicine Hospital. The patient complained of pain in both the tibial tuberosity and restriction on the range of knee joint movement. The results were evaluated using the visual analogue scale, knee injury and osteoarthritis outcome score, and range of motion. Results After treatment, knee pain decreased and range of movement angle improved. Conclusions This study suggests that complex Korean medicine therapy, including myofascial Chuna therapy, are effective in improving the range of motion and improving pain in early Osgood-Schlatter disease. The limitation of this study is that the subject of the study was limited to one case. Further clinical studies are required.

복소 포텐셜을 이용한 로봇 축구용 다개체 로봇의 경로 계획 (Trajectory Planning of Multi Agent Robots for Robot Soccer Using Complex Potential)

  • 이경희;김동한;류근호
    • 제어로봇시스템학회논문지
    • /
    • 제18권12호
    • /
    • pp.1073-1078
    • /
    • 2012
  • This paper deals with the trajectory planning of multi agent robots using complex potential theory for robot soccer. The complex potential theory is introduced, then the circle theorem is used to avoid obstacles, and the vortex pair is used to make precise kicking direction of robot. Various situations of robot soccer are simulated and the effect of vortex strength and the speed of robots are discussed and the better way to avoid obstacles and to kick the precise direction is found. The feasibilities of complex potential theory to apply for the multi agent robots are successful.

복합유성기어장치를 적용한 플러그 방식 출입문의 변속장치 (Complex Planetary Gear Train for a Plug type Passenger Door)

  • 김연수;홍재성;박성혁;백남욱;이병송
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 춘계학술대회 논문집
    • /
    • pp.170-177
    • /
    • 2001
  • Since plug type passenger door has two motion modes, power transmission unit must be capable of plug-in or plug-out, and sliding mode. Complex planetary gear train is proposed, which is composed of two 2K-H, I type planetary gear units. For the proposed complex planetary gear train, ranges of addendum modification coefficients which would not lead to interferences is analyzed, and optimal addendum modification coefficients among these ranges which generate the maximum efficiency are presented. Based on the interference, efficiency and torque ratio analysis results, complex planetary new train is designed and manufactured.

  • PDF

플러그 방식 승객용 출입문의 변속장치 개발 (Development on a Transmission Unit for a Plug Type Passenger Door)

  • 김연수;홍재성;박성혁;이관섭;백영남
    • 한국철도학회논문집
    • /
    • 제4권2호
    • /
    • pp.55-61
    • /
    • 2001
  • Since the plug type passenger door has two modes of motion, a power transmission unit must be capable of plug-in or plug-out mode, and sliding mode. Complex planetary gear train is proposed, which is composed of two 2K-H, I type planetary gear units. For the proposed complex planetary gear train, ranges of addendum modification coefficients which would not lead to interferences are analyzed, and optimal addendum modification coefficients among these ranges which generate the maximum efficiency are presented. Based on the results of analysis on interferences, efficiencies and torque ratios, the specifications for the complex planetary gear train were determined. It has been shown by tests of the complex planetary gear train manufactured that the gear train worked well with good agreements of analysis.

  • PDF

Complex Method를 이용한 자세예측 (Application of the Complex Method to Posture Prediction)

  • 박우진;최재호;정의승
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1996년도 춘계학술대회논문집
    • /
    • pp.313-319
    • /
    • 1996
  • Human posture prediction and motion simulaiton methods try to solve inverse kinematic problems based on the optimization concept. It is of great concern to develop an optimization method which soloves complicated optimization models in an efficient way in order for the models to be biomechanically sound. In this study, a new optimization method for posture prediction, which is named the Complex Method, is presented. The Complex Method demonstrates more flexibility in a way that it can deal with various forms of objective functions with constraints. This is because the method is a function-value-based approach. A two-eimensional whole-body lifting task was selected as an example of posture prediction, and a comparison study with te incrementation method was conducted in order to evaluate the accuracy of the Complex Method.

  • PDF

시스템 식별법을 이용한 선체운동 해석에 관한 연구 (A Study on the analysis of ship motion using system identification method)

  • 송재영;임정빈
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2019년도 추계학술대회
    • /
    • pp.271-271
    • /
    • 2019
  • 선체운동은 외력관계 등 복잡한 환경에서 발생하므로 추정이 난해하다. 선체운동의 추정은 선박의 안전을 확보할 수 있는 중요한 요소이므로 정확한 추정이 필요한 실정이다. 기존의 선체운동관련 연구는 특정 선형에 대한 선체운동을 실험하여 획득한 모델과 기준이되는 모델의 겉보기 운동을 비교한 것으로 선체운동을 직관적으로 추정하기 난해하다. 본 연구에서는 선형-시불변 (Linear-Time lnvariant)시스템의 전달함수 기법을 적용해 선체운동을 극-영점 해석과 주파수 응답 분석을 통해 선체운동의 특성을 전달함수로 추정하는 개념을 소개한다. 선형-시불변 시스템을 이용한 선체운동 해석 모델은 1)파랑의 입력신호와, 2)선체운동의 출력신호, 3)블랙박스로 정의된 선체로 구성된다. 본 모델은 선체운동을 전달함수로 수치화 하여 정의할 수 있고, 극-영점해석 및 주파수 응답 분석을 통해 선체운동의 특성을 추정하는데 용이할 것으로 기대된다.

  • PDF