• Title/Summary/Keyword: complex motion

Search Result 814, Processing Time 0.024 seconds

Theoretical Modeling of Oscillation Characteristics of Oscillating Capillary Tube Heat Pipe

  • Bui, Ngoc-Hung;Kim, Jong-Soo;Jung, Hyun-Seok
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • The examinations of the operating mechanism of an oscillating capillary tube heat pipe (OCHP) using the visualization method revealed that the working fluid in the OCHP oscillated to the axial direction by the contraction and expansion of vapor plugs. The contraction and expansion were due to the formation and extinction of bubbles in the evaporating and condensing part, respectively The actual physical mechanism, whereby the heat which was transferred in such an OCHP was complex and not well understood. In this study, a theoretical model of the OCHP was developed to model the oscillating motion of working fluid in the OCHP. The differential equations of two-phase flow were applied and simultaneous non-linear partial differential equations were solved. From the analysis of the numerical results, it was found that the oscillating motion Of working fluid in the OCHP was affected by the operation and design conditions such as the heat flux, the charging ratio of working fluid and the hydraulic diameter of flow channel. The simulation results showed that the proposed model and solution could be used for estimating the operating mechanism in the OCHP.

The Effect of Fabric Movement on Wrinkle Recovery in a Clothing Care System (의류관리기 내 직물거동이 구김 제거에 미치는 영향)

  • Yu, Dongjoo;Yoon, Juhee;Lee, Sang Wook;Yun, Changsang
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.2
    • /
    • pp.335-345
    • /
    • 2021
  • The purpose of this study was to examine the effect of fabric movement on wrinkle recovery in a clothing care system and to propose an algorithm to improve wrinkle removal performance by adjusting fabric movements. With an increase in the reciprocating speed of the movement system, the number and amplitude of curves on the fabric also increased. This allowed the fabric to be applied to a larger tension, resulting in better wrinkle removal performance at higher speeds. However, even at high reciprocating speeds, wrinkles could not be removed effectively because of nodes at a few specific locations. Based on the results of fabric movement and wrinkle recovery, a complex movement algorithm was proposed with a mixture of various reciprocation speeds. It showed a 41%p (24%→65%) improvement of wrinkle recovery when compared with the conventional algorithm that showed simple fabric movement at 180 rpm. This was because the positions of nodes and antinodes changed continuously and the force by the reciprocating motion could be applied evenly to the fabric.

A dynamic reliability approach to seismic vulnerability analysis of earth dams

  • Hu, Hongqiang;Huang, Yu
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.661-668
    • /
    • 2019
  • Seismic vulnerability assessment is a useful tool for rational safety analysis and planning of large and complex structural systems; it can deal with the effects of uncertainties on the performance of significant structural systems. In this study, an efficient dynamic reliability approach, probability density evolution methodology (PDEM), is proposed for seismic vulnerability analysis of earth dams. The PDEM provides the failure probability of different limit states for various levels of ground motion intensity as well as the mean value, standard deviation and probability density function of the performance metric of the earth dam. Combining the seismic reliability with three different performance levels related to the displacement of the earth dam, the seismic fragility curves are constructed without them being limited to a specific functional form. Furthermore, considering the seismic fragility analysis is a significant procedure in the seismic probabilistic risk assessment of structures, the seismic vulnerability results obtained by the dynamic reliability approach are combined with the results of probabilistic seismic hazard and seismic loss analysis to present and address the PDEM-based seismic probabilistic risk assessment framework by a simulated case study of an earth dam.

2.5D human pose estimation for shadow puppet animation

  • Liu, Shiguang;Hua, Guoguang;Li, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2042-2059
    • /
    • 2019
  • Digital shadow puppet has traditionally relied on expensive motion capture equipments and complex design. In this paper, a low-cost driven technique is presented, that captures human pose estimation data with simple camera from real scenarios, and use them to drive virtual Chinese shadow play in a 2.5D scene. We propose a special method for extracting human pose data for driving virtual Chinese shadow play, which is called 2.5D human pose estimation. Firstly, we use the 3D human pose estimation method to obtain the initial data. In the process of the following transformation, we treat the depth feature as an implicit feature, and map body joints to the range of constraints. We call the obtain pose data as 2.5D pose data. However, the 2.5D pose data can not better control the shadow puppet directly, due to the difference in motion pattern and composition structure between real pose and shadow puppet. To this end, the 2.5D pose data transformation is carried out in the implicit pose mapping space based on self-network and the final 2.5D pose expression data is produced for animating shadow puppets. Experimental results have demonstrated the effectiveness of our new method.

Immediate Effects of Joint Mobilization Techniques on Clinical Measures in Individuals with CAI

  • Kim, Byong Hun;Kim, Chang Young;Kang, Tae Kyu;Cho, Young Jae;Lee, Sae Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.4
    • /
    • pp.219-225
    • /
    • 2018
  • Objective: Epidemiological research shows that 47 to 73% of athletes suffer from recurrent ankle sprains. Joint mobilization techniques (JMT) implemented in correcting may be beneficial in the management of ankle injuries. The purpose of this study is to examine the immediate JM on ankle complex as clinical measures in individuals with chronic ankle instability (CAI) through intervention. Method: Thirteen subjects with CAI (8 males and 5 females) participated in this study. Each subject tried total four alignments (Navicular drop test: NDT, Standing rearfoot angle: SRA, Tibia torsion: TT, and dorsiflexion range of motion: DFROM). The participants were performed the 10 meter shuttle run after JMT for post-task. Finally, it was tried to compare between pre-post tasks after shuttle run. Results: SRA and DFROM after intervention showed significant differences. SRA (p=.026), and DFROM (p=.034). Conclusion: We concluded that the JMT has resulted in improvement in SRA, DFROM. Increased DFROM and varus shapes of foot would be closed kinetic chain, indicating that reduce the risk factors of ankle sprain. Future study needs to be conducted in order to measure the effects of prolonged intervention of JMT.

High-resolution Near-infrared Spectroscopy of IRAS 16316-1540: Evidence of Accretion Burst

  • Yoon, Sung-Yong;Lee, Jeong-Eun;Park, Sunkyung;Lee, Seokho;Herczeg, Gregory J.;Mace, Gregory;Lee, Jae-Joon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.42.3-42.3
    • /
    • 2019
  • The high-resolution near-infrared (NIR) spectroscopy can reveal the evidence of the accretion burst (e.g., the broadened absorption features produced by the Keplerian disk motion) although the moment of the outburst was not caught. The embedded protostar IRAS 16316-1540 observed with the Immersion Grating Infrared Spectrograph (IGRINS, $R={\Delta}{\lambda}/{\lambda}{\sim}45000$) shows the broad absorption features in atomic and CO transitions, as seen in FU Orionis objects (FUors), indicative of an outburst event. We examine whether the spectra of IRAS 16316-1540 arise from the rotating inner hot gaseous disk. Using the IGRINS spectral library, we show that the line profiles of IRAS 16316-1540 are more consistent with an M1.5 V template spectrum convolved with a disk rotation profile than the protostellar photosphere absorption features with a high stellar rotation velocity. We also note that the absorption features deviated from the expected line profile of the accretion disk model can be explained by a turbulence motion generated in the disk atmosphere. From previous observations that show the complex environment and the misaligned outflow axes in IRAS 16316-1540, we suggest that an impact of infalling clumpy envelope material against the disk induces the disk precession, causing the accretion burst from the inner disk to the protostar.

  • PDF

Using CNN- VGG 16 to detect the tennis motion tracking by information entropy and unascertained measurement theory

  • Zhong, Yongfeng;Liang, Xiaojun
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.223-239
    • /
    • 2022
  • Object detection has always been to pursue objects with particular properties or representations and to predict details on objects including the positions, sizes and angle of rotation in the current picture. This was a very important subject of computer vision science. While vision-based object tracking strategies for the analysis of competitive videos have been developed, it is still difficult to accurately identify and position a speedy small ball. In this study, deep learning (DP) network was developed to face these obstacles in the study of tennis motion tracking from a complex perspective to understand the performance of athletes. This research has used CNN-VGG 16 to tracking the tennis ball from broadcasting videos while their images are distorted, thin and often invisible not only to identify the image of the ball from a single frame, but also to learn patterns from consecutive frames, then VGG 16 takes images with 640 to 360 sizes to locate the ball and obtain high accuracy in public videos. VGG 16 tests 99.6%, 96.63%, and 99.5%, respectively, of accuracy. In order to avoid overfitting, 9 additional videos and a subset of the previous dataset are partly labelled for the 10-fold cross-validation. The results show that CNN-VGG 16 outperforms the standard approach by a wide margin and provides excellent ball tracking performance.

Case Report: The Complex Korean Medicine Treatment of Abdominal and Lower Back Pain after Laparoscopic Hysterectomy (자궁적출술 후 하복부 및 요추부 통증을 호소하는 환자에 대한 한방 복합 치료 1례)

  • Yu-jin Lee;Minjin Kwon;Na-young Kim;Yu-Ra Im
    • The Journal of Internal Korean Medicine
    • /
    • v.44 no.2
    • /
    • pp.197-206
    • /
    • 2023
  • Objesctives: This study reports the effect of Korean medicine treatment on a patient with abdominal and lower back pain after a laparoscopic hysterectomy. Methods: The patient received Korean herbal medicine, pharmacopuncture treatment, and acupuncture treatment for six days. We measured the numeric rating scale (NRS), Oswestry Disability Index (ODI), Range of Motion (ROM), and Life-5 Dimensions scale (EQ-5D) to assess symptom changes. Results: After treatment, the patient showed decreased numeric rating scale (NRS) and Oswestry Disability Index (ODI), as well as augmented Range of Motion (ROM) and European Quality of Life 5 Dimensions scale (EQ-5D). Conclusion: The results indicate that Korean medicine treatment is effective management for patients with abdominal and lower back pain after a laparoscopic hysterectomy.

Structural configurations and dynamic performances of flexible riser with distributed buoyancy modules based on FEM simulations

  • Chen, Weimin;Guo, Shuangxi;Li, Yilun;Gai, Yuxin;Shen, Yijun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.650-658
    • /
    • 2021
  • Flexible risers are usually used as conveying systems to bring ocean resources from sea bed up to onshore. Under ocean environments, risers need to bear complex loads and it is crucial to comprehensively examine riser's configurations and to analyze structural dynamic performances under excitation of bottom vehicle motions, to guarantee structural safe operation and required service lives. In this study, considering a saddle-shaped riser, the influences of some important design parameters, including installation position of buoyancy modules, buoyancy ratio and motion of mining vehicle, on riser's configuration and response are carefully examined. Through our FEM simulations, the spatial distributions of structural tensions and curvatures along of riser length, under different configurations, are compared. Then, the impacts of mining vehicle motion on riser dynamic response are discussed, and structural tolerance performance is assessed. The results show that modules installation position and buoyancy ratio have significant impacts on riser configurations. And, an appropriate riser configuration is obtained through comprehensive analysis on the modules positions and buoyancy ratios. Under this proposed configuration, the structural tension and curvature could moderately change with buoyancy modules and bottom-end conditions, in other words, the proposed saddle-shaped riser has a good tolerance performance to various load excitations.

Facial Contour Extraction in Moving Pictures by using DCM mask and Initial Curve Interpolation of Snakes (DCM 마스크와 스네이크의 초기곡선 보간에 의한 동영상에서의 얼굴 윤곽선 추출)

  • Kim Young-Won;Jun Byung-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.4 s.310
    • /
    • pp.58-66
    • /
    • 2006
  • In this paper, we apply DCM(Dilation of Color and Motion information) mask and Active Contour Models(Snakes) to extract facial outline in moving pictures with complex background. First, we propose DCM mask which is made by applying morphology dilation and AND operation to combine facial color and motion information, and use this mask to detect facial region without complex background and to remove noise in image energy. Also, initial curves are automatically set according to rotational degree estimated with geometric ratio of facial elements to overcome the demerit of Active Contour Models which is sensitive to initial curves. And edge intensity and brightness are both used as image energy of snakes to extract contour at parts with weak edges. For experiments, we acquired total 480 frames with various head-poses of sixteen persons with both eyes shown by taking pictures in inner space and also by capturing broadcasting images. As a result, it showed that more elaborate facial contour is extracted at average processing time of 0.28 seconds when using interpolated initial curves according to facial rotation degree and using combined image energy of edge intensity and brightness.