• 제목/요약/키워드: complex modes

검색결과 402건 처리시간 0.025초

구분모드합성에 의한 드럼 브레이크 스퀼 소음 해석 및 저감 (Squeal Noise Analysis and Reduction of Drum Brake Using Component Mode Synthesis)

  • 김진호;배병주;이시복;김태종
    • 한국소음진동공학회논문집
    • /
    • 제15권1호
    • /
    • pp.72-80
    • /
    • 2005
  • Recent studies have dealt with brake squeal in terms of the coupled vibration of brake component parts. In this paper, we assemble the mode models derived from FE analysis of the individual components of the drum brake system into the system model by considering the friction interaction of the lining and drum at the interface. The validity of the component models are backed up by the experimental confirmation work. By scrutinizing the real parts of the complex eigen-values of the system, the unstable modes, which may be strong candidate sources of squeal noise, are identified. Mode participation factors are calculated to examine the modal coupling mechanism. The model predictions for the unstable frequencies pointed well the actual squeal noise frequencies measured through field test. Sensitivity analysis is also performed to identify parametric dependency trend of the unstable modes, which would indicate the direction for the squeal noise reduction design. Finally, reduction of the squeal noise tendency through shape modification is tried.

주파수 응답함수를 이용한 부분구조 합성에서 모드자름 오차 보정에 관한 수치적 연구 (A Case Study on the Importance of Residual Compensation in FRF-based Substructuring)

  • 박윤식;김경호
    • 한국소음진동공학회논문집
    • /
    • 제12권4호
    • /
    • pp.302-309
    • /
    • 2002
  • A FRF-based substructuring method attempts to predict the dynamic characteristics of a complex structure from predetermined FRFs of the comprising uncoupled substructures. Although this method has the advantage of being able to incorporate experimental component FRFs directly, it is prone to errors : measurement errors, coordinate incompleteness, modal incompleteness, etc. Among the various sources of errors, this paper deals with the problem of modal incompleteness (or residual problem) of which importance is underestimated compared to others. It is a well-known rule of thumb that such a problem can be overcome by including modes up to 2 or 3 times the upper frequency of interest. Using a simulated case study, it is demonstrated that even including modes up to 20 times the upper frequency of interest does not guarantee a satisfactory result. A method to compensate the residual errors is introduced. This method requires the whole FRF matrices of substructures which is practically impossible for a complex structure. An applicable alternative is suggested and applied successfully to the case study. Finally, the effects of measurement errors on the residual compensation are also discussed.

Poria cocos 균핵에서 분리한 성분들과 DNA Topoisomerase I의 반응양상 및 효소저해 활성 (Binding Mode and Inhibitory Activity of Constituents Isolated from Sclerotium of Poria cocos with DNA Topoisomerase I)

  • 최인희;김지현;김춘미
    • 약학회지
    • /
    • 제49권5호
    • /
    • pp.428-436
    • /
    • 2005
  • DNA topoisomerase I(TOP1) helps the control of DNA replication, transcription and recombination by assist­ing breaking and rejoining of DNA double strand. Camptothecin (CPT) and its derivative, topotecan, are known to inhibit TOP1 by intercalating into TOP1-DNA complex. Recently various non-CPT intercalators are synthesized for a new class of TOP1 inhibitors. In this study, six compounds isolated from Poria cocos were investigated for their interaction with TOP1­DNA complex using the flexible docking program, FlexiDock. The binding modes were analyzed and compared with the TOP1 inhibition activities. The compounds that showed potent activity were intercalated between the + 1/-1 base pairs of DNA, located near the active site phosphotyrosine723 and formed hydrogen bonds with active site residues. On the other hand, compounds with no activity were not docked at all. The binding modes were well correlated with the inhibition activity, suggesting the possibility that potent inhibitors can be designed from the information presented by the docking study.

Behavior and simplified analysis of steel-concrete composite beams subjected to localized blast loading

  • Li, Guo-Qiang;Yang, Tao-Chun;Chen, Su-Wen
    • Structural Engineering and Mechanics
    • /
    • 제32권2호
    • /
    • pp.337-350
    • /
    • 2009
  • Finite element simulations are increasingly used in structural analysis and design, especially in cases where complex structural and loading conditions are involved. Due to considerable progresses in computer technology as well as nonlinear finite-element analysis techniques in past years, it has become possible to pursue an accurate analysis of the complex blast-induced structural effects by means of numerical simulations. This paper aims to develop a better understanding of the behavior of steel-concrete composite beams (SCCB) under localized blast loading through a numerical parametric study. A finite element model is set up to simulate the blast-resistant features of SCCB using the transient dynamic analysis software LS-DYNA. It is demonstrated that there are three dominant failure modes for SCCB subjected to localized blast loading. The effect of loading position on the behavior of SCCB is also investigated. Finally, a simplified model is proposed for assessing the overall response of SCCB subjected to localized blast loading.

자동차 드럼 브레이크의 스퀼 전산 해석 연구 (Computational Study of Automotive Drum Brake Squeal)

  • 정택수;조종두
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.16-22
    • /
    • 2014
  • Automotive NVH on brake operation is mainly caused by a coupling action of vehicle speed and inter parts friction and its frequency occurs over a broad band of 0.1 kHz~10 kHz. Especially, squeal noise, being a self-excited vibration generated by friction force between drum and lining, occurs over 1 kHz and consequently dynamic instability is induced when friction energy is applied to a brake vibration system. The squeal strongly depends on nonlinear properties influenced by the material of lining, velocity of vehicle, and the dynamic properties of a brake system. The dynamic properties are considered as a main influential design factor to squeal noise, however the analysis of the properties are rarely facilitated due to arbitrariness of shape by wearing down. In this paper, we research generating tendency of squeal noise through complex eigenvalue analysis, tracking drum brake's unstable modes in accordance with the wear shape of drum and lining such as tapered and bellmouth shape, and analyze computed unstable modes by variable shapes.

Investigation of the energy efficiency of biotechnical systems in electrotechnological complexes

  • CHMIL, A.;OLIINYK, Y.
    • 식품보건융합연구
    • /
    • 제6권6호
    • /
    • pp.17-23
    • /
    • 2020
  • The main task of agro-industrial production is to provide the population with food products for the production of which energy is expended in the form of electricity, technical means, fuels and lubricants, mineral fertilizers, etc. Accordingly, we have developed a concept and general methodological principles for the analysis of ecological and biotechnical systems in animal husbandry, it makes it possible to simulate the influence of various factors on the energy and ecological efficiency of systems, to compare and search for energy-saving modes and technologies. General methodological principles have been developed for the analysis of energy efficiency and environmental safety of agricultural ecological and biotechnical systems, which are based on the definition of the bioenergy efficiency coefficient, the quantitative expression of which is the ratio of energy accumulated in products to the total energy consumption for its production. This makes it possible to model with sufficient accuracy the influence of various factors on the energy and environmental efficiency of the system, to compare and search for energy-saving modes and technologies in order to find and select the most energy efficient ones to increase the energy efficiency of the complex.

매우 넓은 영역의 Self-Pulsation 주파수와 높은 변조 지수를 가자는 다중 영역 복소 결합 DFB 레이저 (A Multi-Section Complex-Coupled DFB Laser with a Very Wide Range of Self-Pulsation Frequency and High Modulation Index)

  • 김부균;김태영;김상택;김선호;박경현
    • 한국광학회지
    • /
    • 제17권2호
    • /
    • pp.191-197
    • /
    • 2006
  • 두 개의 DFB 영역과 위상조정 영역으로 구성된 다중 영역 복소 결합 DFB 레이저에서 방출되는 두 모드의 비팅에 의해서 발생하는 Self-Pulsation(SP) 동작 특성을 전산 모의 하였다. SP 주파수는 두 DFB 영역에서 발진하는 모드의 파장 차이에 의해 결정되며, 각각의 DFB 영역의 발진 모드의 파장은 회절격자 주기의 변화에 의해 달라진다. 두 DFB 영역의 회절격자의 주기 차이를 변화시킴으로써 다중 영역 DFB 레이저에서 밭생하는 SP 주파수를 매우 낮은 주파수에서 THz 영역까지 변화시킬 수 있었다. 또한 발진 모드가 다른 DFB 영역의 금지대역에 놓이지 않는 경우 발진되는 모드는 다른 DFB 영역으로 큰 반사 없이 진행하여 두 모드들 사이의 상호작용이 크게 발생하여 index-coupled 회절격자를 가지는 다중 영역 DFB 레이저와는 달리 변조 지수가 매우 큰 출력을 얻을 수 있었다.

Decision-Directed 모드와 유클리드 거리 알고리듬을 사용한 복소채널의 블라인드 등화 (Complex-Channel Blind Equalization using Euclidean-Distance Algorithms with Decision-Directed Modes)

  • 김남용
    • 한국정보전자통신기술학회논문지
    • /
    • 제3권3호
    • /
    • pp.73-80
    • /
    • 2010
  • 상수 모듈러스 오차와 두확률 밀도 함수의 유클리드 거리에 기본을 둔 블라인드 알고리듬은 정보 이론적 학습 방법의 장점에도 불구하고 복소 채널의 위상 회전을 극복하지 못해 열악한 성능을 보인다. 이 논문에서는, 출력 전력이 다중 모듈러스 값의 근방에 있을 때 decision-directed 모드로 동작하는 기법을 정보 이론적 학습에 추가하므로서 복소 채널의 위상 회전 문제를 해결할 수 있음를 보였다. 복소 채널 모델과 16 QAM 방식에 대한 시뮬레이션 결과에서 복소 채널의 위상 회전 문제가 해결되어 현격한 성능 향상을 보였다.

  • PDF

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF