• 제목/요약/키워드: complex foundations

검색결과 50건 처리시간 0.024초

Behavior of seepage in earth dams through complex foundations using three-dimensional finite element method

  • Truong Q. Nhu;Nipawan Kunsuwan;Warakorn Mairaing;Bunpoat Kunsuwan;Thawatchai Chalermpornchai
    • Geomechanics and Engineering
    • /
    • 제39권3호
    • /
    • pp.273-282
    • /
    • 2024
  • Seepage flow through complex foundations is one of the main factors causing dam failure. To foresee this problem, seepage modeling and analysis are usually performed. This study investigated seepage behavior as affected by complex, foliated, rock foundations in an earth dam. The PLAXIS 3-D LE software was used to analyze seepage problems for steady state flow. The normal high-water level (NHWL) with anisotropic permeability was considered in the models. The anisotropic permeability of foliated rocks was determined according to the angle of inclination. The flow characteristics along the dam axis could be divided into five zones, with three zones for the middle parts (MD1, MD2 and MD3) and one zones for each of the two abutments (LA and RA). The quantities of flow (water transmissibility) upstream to downstream (QX) on each zone highly depended on the geological structures. Although the average seepage transmissibility values of the residual soil and phyllite were almost equal for every zone. The values in the anticline areas were higher than for the syncline areas, especially for the middle zones. The flow tended to transfer from residual soil into phyllite rock in the anticline area. The transmissibility ratio of anticline to syncline was more than 2 times for both the residual soil and phyllite. The finger drain and river channel attracted substantial flow in the longitudinal (QY) and vertical (QZ) directions. However, the verification of the field piezometric versus the modeling heads showed the possibility of blockage of the finger drain.

말뚝지지 전면기초의 설계를 위한 실용적 해석방법에 관한 연구 (A Practical Analysis Method for the Design of Piled Raft Foundations)

  • 이승훈;박영호;송명준
    • 한국지반공학회논문집
    • /
    • 제23권12호
    • /
    • pp.83-94
    • /
    • 2007
  • 말뚝지지 전면기초는 말뚝기초를 경제적으로 설계할 수 있는 개념으로 주목을 받고 있으나, 전면기초, 말뚝, 지반간의 상호작용이 복잡하여 아직 국내에서 쉽게 실용화가 되고 있지 않은 실정이다. 저자들은 말뚝지지 전면기초의 실용화를 위해 필수적이라고 할 수 있는 효율적인 근사해석 프로그램을 개발하였으며, 본 논문에 그 내용을 간략하게 소개하였다. 개발된 프로그램에 적용된 해석모델은 크게 두 부분으로 구성되는데, 하나는 스프링 위에 놓인 유한요소의 기초판 해석모델이고, 다른 하나는 다층지반에 대하여 말뚝의 비선형성 및 상호작용의 영향을 고려할 수 있는 군말뚝 해석모델이다. 두 모델간의 적합조건을 만족시키기 위한 반복계산과정을 통해 지반과 말뚝의 강성을 구하여 말뚝지지 전면기초의 설계에 필요한 거동 예측결과를 얻을 수 있다. 해석기법의 검증을 위하여 정밀한 3차원 유한요소해석 및 기존에 개발된 근사해석방법들과의 비교분석을 수행하였으며, 이를 통해 개발된 프로그램이 기초요소간의 상호작용을 합리적으로 고려하면서도 비선형 해석이 가능하고 다층지반에 대한 적용성이 좋아 말뚝지지 전면기초의 해석 및 설계를 위한 실용적 목적에 잘 부합하는 성능을 갖는 것을 알 수 있었다.

전동기계기초 전용 구조해석 및 설계 통합 시스템의 개발 (Development of Integrated System for Structural Analysis & Design of Foundation for Vibrating Machines)

  • 이동근;김현수;손권익;임인묵
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.455-462
    • /
    • 1998
  • Analysis and design of vibrating machine foundations subjected to dynamic loads is a very complex problem. Thus it is difficult to set up an accurate analytical modeling. Generally, the design of foundations for vibrating machines has been performed by the equivalent static analysis which is generally based on engineer's experience and various assumptions The purpose of this study is to develop an integrated system which enables structural engineers to produce results of high quality within a short time in works related to structural analysis and design of foundation for vibrating machines. As the result of this study, level-up of application software is expected as well as improvement of quality in structural engineering and reduction of engineers' effort.

  • PDF

Organizational-Economic Mechanism of the Development of the Agro-Industrial Complex in Modern Conditions

  • Ivanko, Anatolii;Vasylenko, Nataliia;Bushovska, Lesia;Makedon, Halyna;Dvornyk, Inna
    • International Journal of Computer Science & Network Security
    • /
    • 제22권2호
    • /
    • pp.107-114
    • /
    • 2022
  • The main purpose of this study is to substantiate the theoretical and methodological foundations of the organizational and economic mechanism of development of the agro-industrial complex in modern conditions. Organizational and economic mechanism is presented as a complex organizational structure of the system type, which is aimed at performing specific functions, the characteristic feature of which is the constant support of process changes without which the organizational and economic mechanism can not exist. There are four components of the agro-industrial complex, represented by agriculture and the national economy, which ensure its operation, including industry, processing of agricultural products, its storage and transportation, sale and repair and maintenance of agricultural machinery and more. It is proved that the organizational and economic mechanism of development of agro-industrial complex in modern conditions it is expedient to consider: from the point of view of system and process approaches; as a set of economic levers and organizational measures to influence the agro-industrial complex; constituent components of organizational influence on the development of the complex; a set of components, elements that are integrated into the system of economic relations of the subjects of the agro-industrial complex; a set of purposeful stimulators of agro-industrial complex development. The functions of the organizational component of the mechanism of agro-industrial complex include: redistributive, planning, interaction, control, integration and regulatory functions, the functions of the economic component include consumer, investment and innovation, social, incentive, monitoring functions of the mechanism. The symbiosis of the functions of organizational and economic components ensure the effectiveness of the organizational and economic mechanism of the organizational and economic mechanism through its functionalities as a whole.

Generalized curved beam on elastic foundation solved by transfer matrix method

  • Arici, Marcello;Granata, Michele Fabio
    • Structural Engineering and Mechanics
    • /
    • 제40권2호
    • /
    • pp.279-295
    • /
    • 2011
  • A solution of space curved bars with generalized Winkler soil found by means of Transfer Matrix Method is presented. Distributed, concentrated loads and imposed strains are applied to the beam as well as rigid or elastic boundaries are considered at the ends. The proposed approach gives the analytical and numerical exact solution for circular beams and rings, loaded in the plane or perpendicular to it. A well-approximated solution can be found for general space curved bars with complex geometry. Elastic foundation is characterized by six parameters of stiffness in different directions: three for rectilinear springs and three for rotational springs. The beam has axial, shear, bending and torsional stiffness. Numerical examples are given in order to solve practical cases of straight and curved foundations. The presented method can be applied to a wide range of problems, including the study of tanks, shells and complex foundation systems. The particular case of box girder distortion can also be studied through the beam on elastic foundation (BEF) analogy.

충적토사지반에서의 도심터널 설계 및 시공 (Design and Construction Case of Urban Tunnel in Alluvial Soil)

  • 장석부;허도학;문상조;김도수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.829-834
    • /
    • 2009
  • Alluvial soil is one of the most difficult grounds for tunneling works due to the insufficient ground strength and excessive ground water inflow. Dduk island in Seoul has a wide alluvium developed by two rivers, Han and Jung-Ryang. Subway tunnel of $\bigcirc\bigcirc$ line planed across Dduk island has highly poor ground conditions due to small cover and deeply developed alluvium. Moreover, much part of this tunnel is located parallel to the bridge foundations of another railway with a small horizontal distance. Original design was done in 2002 and construction has been in progress. During the construction, tunnel design has been partly changed and adjusted for the complex ground condition and the demand from related organizations. This paper intend to introduce the urban tunnel design and construction in alluvial soils. This line could be divided three sections(A, B, C) according to ground and adjacent conditions. Section A is featured by mixed tunnel faces consisted with alluvial soils and weathered or weak rocks. The feature of section B is that tunnel underpasses near the bridge foundations of another subway. Lastly, section C with a very short length is the most difficult construction conditions due to the small cover, poor ground, obstacles on and underneath ground surface.

  • PDF

Simulation of monopile-wheel hybrid foundations under eccentric lateral load in sand-over-clay

  • Zou, Xinjun;Wang, Yikang;Zhou, Mi;Zhang, Xihong
    • Geomechanics and Engineering
    • /
    • 제28권6호
    • /
    • pp.585-598
    • /
    • 2022
  • The monopile-friction wheel hybrid foundation is an innovative solution for offshore structures which are mainly subjected to large lateral eccentric load induced by winds, waves, and currents during their service life. This paper presents an extensive numerical analysis to investigate the lateral load and moment bearing performances of hybrid foundation, considering various potential influencing factors in sand-overlaying-clay soil deposits, with the complex lateral loads being simplified into a resultant lateral load acting at a certain height above the mudline. Finite element models are generated and validated against experimental data where very good agreements are obtained. The failure mechanisms of hybrid foundations under lateral loading are illustrated to demonstrate the effect of the friction wheel in the hybrid system. Parametric study shows that the load bearing performances of the hybrid foundation is significantly dependent of wheel diameter, pile embedment depth, internal friction angle of sand, loading eccentricity (distance from the load application point to the ground level), and the thickness of upper sandy layer. Simplified empirical formulae is proposed based on the numerical results to predict the corresponding lateral load and moment bearing capacities of the hybrid foundation for design application.

Optimizing shallow foundation design: A machine learning approach for bearing capacity estimation over cavities

  • Kumar Shubham;Subhadeep Metya;Abdhesh Kumar Sinha
    • Geomechanics and Engineering
    • /
    • 제37권6호
    • /
    • pp.629-641
    • /
    • 2024
  • The presence of excavations or cavities beneath the foundations of a building can have a significant impact on their stability and cause extensive damage. Traditional methods for calculating the bearing capacity and subsidence of foundations over cavities can be complex and time-consuming, particularly when dealing with conditions that vary. In such situations, machine learning (ML) and deep learning (DL) techniques provide effective alternatives. This study concentrates on constructing a prediction model based on the performance of ML and DL algorithms that can be applied in real-world settings. The efficacy of eight algorithms, including Regression Analysis, k-Nearest Neighbor, Decision Tree, Random Forest, Multivariate Regression Spline, Artificial Neural Network, and Deep Neural Network, was evaluated. Using a Python-assisted automation technique integrated with the PLAXIS 2D platform, a dataset containing 272 cases with eight input parameters and one target variable was generated. In general, the DL model performed better than the ML models, and all models, except the regression models, attained outstanding results with an R2 greater than 0.90. These models can also be used as surrogate models in reliability analysis to evaluate failure risks and probabilities.

Three-dimensional numerical modelling of geocell reinforced soils and its practical application

  • Song, Fei;Tian, Yinghui
    • Geomechanics and Engineering
    • /
    • 제17권1호
    • /
    • pp.1-9
    • /
    • 2019
  • This paper proposes a new numerical approach to model geocell reinforced soils, where the geocell is described as membrane elements and the complex interaction between geocell and soil is realized by coupling their degrees of freedom. The effectiveness and robustness of this approach are demonstrated using two examples, i.e., a geocell-reinforced foundation and a large scale retaining wall project. The first example validates the approach against established solutions through a comprehensive parametrical study to understand the influence of geocell on the improvement of bearing capacity of foundations. The study results show that reducing the geocell pocket size has a strong effect on improving the bearing capacity. In addition, when the aspect ratio maintains the same value, the bearing capacity improvement with increasing geocell height is insignificant. Comparing with the field monitoring and measurement in the project, the second example investigates the application of the approach to practical engineering projects. This paper provides a practically feasible and efficient modelling approach, where no explicit interface or contact is required. This allows geocell reinforced soils in large scale project can be effectively modelled where the mechanism for complex geocell-soil interaction can be explicitly observed.

유한요소해석을 이용한 복합거동 연결체의 하중지지 특성 (Finite Element Analysis of the Complex Behavior and Load Bearing Characteristics of a Foundation Pile Connector)

  • 신희수;김기성;홍승서;김영석;안준혁
    • 지질공학
    • /
    • 제29권4호
    • /
    • pp.451-460
    • /
    • 2019
  • 본 논문에서는 고상식(Piloti) 기초가 사용되는 오일샌드 플랜트의 하부기초에 소형강관 말뚝이나 마이크로 파일 등을 마찰 말뚝개념으로 사용할 경우 발생할 수 있는 문제점을 극복하고자 복합거동 연결체를 제안하였다. 말뚝의 개별 침하나 융기(Heaving)를 1개의 군으로 연결하여 복합거동이 가능하도록 하였으며, 하중 지지특성을 분석하였다. 기존 무리말뚝과 말뚝전면(Piled raft) 기초의 장점을 오일샌드 플랜트에 적용 할 수 있도록 복합거동 연결체의 형상을 결정하였다. 또한, 축소모형을 제작하여 하중에 대한 거동을 계측하고, 이를 통해 장치의 안정성 및 취약부위를 검토하여 연결체의 형태를 평가하였다.