• Title/Summary/Keyword: complementary energy principle

Search Result 15, Processing Time 0.029 seconds

Analysis of plane frame structure using base force element method

  • Peng, Yijiang;Bai, Yaqiong;Guo, Qing
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.11-20
    • /
    • 2017
  • The base force element method (BFEM) is a new finite element method. In this paper, a degenerated 4-mid-node plane element from concave polygonal element of BFEM was proposed. The performance of this quadrilateral element with 4 mid-edge nodes in the BFEM on complementary energy principle is studied. Four examples of linear elastic analysis for plane frame structure are presented. The influence of aspect ratio of the element is analyzed. The feasibility of the 4 mid-edge node element model of BFEM on complementary energy principles researched for plane frame problems. The results using the BFEM are compared with corresponding analytical solutions and those obtained from the standard displacement finite element method. It is revealed that the BFEM has better performance compared to the displacement model in the case of large aspect ratio.

Sizing, geometry and topology optimization of trusses using force method and supervised charged system search

  • Kaveh, A.;Ahmadi, B.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.3
    • /
    • pp.365-382
    • /
    • 2014
  • In this article, the force method and Charged System Search (CSS) algorithm are used for the analysis and optimal design of truss structures. The CSS algorithm is employed as the optimization tool and the force method is utilized for analysis. In this paper in addition to member's cross sections, redundant forces, geometry and topology variables are considered as the optimization variables. Minimum complementary energy principle is used directly to analyze the structure. In the presented method, redundant forces are calculated by the CSS in order to minimize the energy function. Combination of the CSS and force method leads to an efficient algorithm in comparison to some of the optimization algorithms.

Two rectangular elements based on analytical functions

  • Rezaiee-Pajand, Mohammad;Karimipour, Arash
    • Advances in Computational Design
    • /
    • v.5 no.2
    • /
    • pp.147-175
    • /
    • 2020
  • To achieve appropriate stresses, two new rectangular elements are presented in this study. For reaching this aim, a complementary energy functional is used within an element for the analysis of plane problems. In this energy form, the Airy stress function will be used as a functional variable. Besides, some basic analytical solutions are found for the stress functions. These trial functions are matched with each element number of degrees of freedom, which leads to a number of equations with the anonymous constants. Subsequently, according to the principle of minimum complementary energy, the unknown constants can be expressed in terms of displacements. This system can be rewritten in terms of the nodal displacement. In this way, two new hybrid-rectangular triangular elements are formulated, which have 16 and 40 degrees of freedom. To validate the outcomes, extensive numerical studies are performed. All findings clearly demonstrate accuracies of structural displacements, as well as, stresses.

Effects of the Thickness of Bond Coating on the Thermal Stress of TBC (접착층의 두께가 용사 열차폐 코팅의 열응력에 미치는 영향)

  • 김형남;최성남;장기상
    • Proceedings of the KWS Conference
    • /
    • 2000.04a
    • /
    • pp.228-231
    • /
    • 2000
  • Based on the principle of complementary energy an analytical method is developed for determining thermal stress distribution in an thermal barrier coating. This method gives the stress distributions which satisfy the stress-free boundary conditions at the edge. Numerical examples are given in order to verify the method and to investigate the thickness effects of the ZrO$_2$-8wt%Y$_2$O$_3$ top coat on the integrity of thermal barrier coating consisted of IN738LC substrate and MCrAlY bond coat.

  • PDF

A Study on the Effects of the Thickness of Top Coat on the Thermal Stresses of a Sprayed Thermal Barrier Coating (용사 열차폐 코팅층의 두께가 열응력에 미치는 영향)

  • 김형남;양승한
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.223-225
    • /
    • 2004
  • Based on the principle of complementary energy an analytical method is developed for determining thermal stress distribution in an thermal barrier coating. This method gives the stress distributions which satisfy the stress-free boundary conditions at the edge. Numerical examples are given in order to verify the method and to investigate the thickness effects of the ZrO$_2$-8wt%Y$_2$O$_3$ top coat on the integrity of thermal barrier coating consisted of IN738LC substrate and MCrAlY bond coat.

  • PDF

A Study on Complementarity of Green Growth (녹색성장의 상보성에 관한 연구)

  • PARK, Seong-Kwae
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.21 no.2
    • /
    • pp.306-324
    • /
    • 2009
  • The purpose of this study is to analyze green growth issues such as employment, education and training, social capital and nature's standing right from the complementary perspective between natural environment conservation and economic growth. Green growth can be defined as a growth which lowers an increasing rate of entropy and at the same time improves our living standard. Green growth paradigm requires a quite amount of understanding the laws of thermodynamics and the uncertainty principle as the highest orders which regulate our overall socio-economic behaviors. They suggest that socio-economic growth is a mere transformation process of natural energy from one form to another and they increases natural manmade entropy over time. The most important issue of green growth policy may be a problem concerning employment and/or unemployment since green growth may induce inevitable movement of resources from the existing industries to the green sector. In particular, green industries will demand more highly specialized manpower than the existing ones. Without a well-designed new training education system and social capital accumulation toward environmental concerns, green growth may accompany a substantial amount of structural involuntary frictional unemployment. This may increase not only wealth-distribution disparity but also political instability. In order to achieve harmonious green growth, we should recognize that there are important complementary relationships between green and growth. Our society should also be able to innovate the existing educational system to accumulate social capital, to create a new sharing system, and to admit nature's standing right. Although the 2003 lawsuit case of Korean Salamander in Cheonseong Mountain went against plaintiff, it would provide apparently our society with a way of green development ahead.

Thermal Stresses near the Edge in a Clad (클래딩 자유단의 열응력 해석)

  • 김형남;최성남;장기상
    • Journal of Welding and Joining
    • /
    • v.18 no.1
    • /
    • pp.104-109
    • /
    • 2000
  • Based on the principle of complementary energy, an analytical method is developed which focused on the end effects for determining thermal stress distributions in the clad beam. This method gives the stress distributions which completely satisfy the stress-free boundary condition at the edge. Numerical results shows that shear and peeling stress at the interface between the substrate and clad are significant near the edge and become negligible in the interior region. Even thought the relative location where the maximum or minimum stresses take place moves to interior as the length of the beam becomes smaller, the absolute location from the free end and the value of these stresses are the same in spite of the variation of the length of beam.

  • PDF

Thermal Stresses near the Edge in a Clad (클래딩 자유단의 열응력 해석)

  • 김형남;최성남;장기상
    • Proceedings of the KWS Conference
    • /
    • 1999.10a
    • /
    • pp.306-309
    • /
    • 1999
  • Based on the principle of complementary energy, an analytical method is developed which focused on the end effects for determining thermal stress distributions in the claded beam. This method gives the stress distributions which completely satisfy the stress-free boundary condition at the edge. Numerical result shows that shear stress and peeling stress at the interface between the substrate and clad are significant near the edge and become negligible in the interior region. Even though the relative location where the maximum or minimum stresses take place moves to interior as the length of the beam become smaller, the absolute location from the free end and the value of these stresses are the same in spite of the variation of the length of beam.

  • PDF

A Study on the Effect of the Thickness of Bond Coating on the Thermal Stresses of a Sprayed Thermal Barrier Coating (접착층의 두께가 용사 열차폐 코팅의 열응력에 미치는 영향에 관한 연구)

  • 김형남
    • Journal of Welding and Joining
    • /
    • v.19 no.2
    • /
    • pp.221-227
    • /
    • 2001
  • Based on the principle of complementary energy, an analytical method is developed which focuses on the end effects for determining thermal stress distributions in a three-layered beam. This method gives the stress distributions which completely satisfy the stress-free boundary conditions. A numerical example is given in order to verify this method. The results show that the present analytical solutions have the values of stress in excellent agreement with the solutions derived by other investigators. Using this method, the effects of the thickness of bond coat on the thermal stresses of a typical sprayed thermal barrier coating, which consists of IN738LC substrate, MCrAIY bond coat and ZrO$_2$-8wt%Y$_2$O$_3$top coat, were investigated.

  • PDF

A Correlative Linkage between the Cosmic Principle of Birth-growth and Contraction-recess and Non Action Tao (생장염장(生長斂藏)·무위이화(無爲而化)의 상관연동 연구)

  • Kim, Yong-hwan
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.26
    • /
    • pp.77-110
    • /
    • 2016
  • The purpose of this article is to study on the Correlative linkage between the cosmic principle of birth-growth and contraction-recess and the Non action Tao. The split time between birth-growth and contraction-recess is the conflict between the Prior Time and Posterior Time as the Great Renewal. The cycle of this Chaotic Renewals is the cycle of a cosmic circulation as 129,600 years. In relation to the correlative linkage of function, Jeong-san Sangje governs all the beings of the universe by means of the cosmic principle birth-growth and contraction-recess. Also Jeong-san Sangje, using the Non action Tao governing all the beings of the universe and let them exist as the original selves. Thus, the two necessities are mutual interdependent and mutual complementary. In relation to the correlative linkage of substance, Jeong-san Sangje is included in the cosmic life which forms of all the existences. That is personal God of Jeong-san Sangje that is a part of the cosmic life. So that Jeong-san Sangje is included in the cosmic life, the basis of all the cosmic affairs. He is also subordinate to the cosmic principle but he simultaneously governs it. Jeong-san Sangje is trans-versal mediator between the cosmic principle and the cosmic life of Non action Tao, since it is the origin of his mind. To understand the nature of Jeong-san Sangje who becomes one with the cosmic life, the old causal way of thinking which inquires the timely order and seeks for causes and effects should be abandoned. The new way of thinking is thus different from the old one. The core of cosmic life is abstracted as the essence-energy and god-blood. This structure is similar to the cosmic principle of birth-growth and contraction-recess. The death is a kind of event caused by the depletion of the essence, and all beings could altered into the god. It also would be returned to the natural birth place of the cosmos, as it were, that can be called the 'Return to the Origin'. As the cosmos goes to the new epoch, humans have been living together with the cosmic principle. Now we can expect the Posterior Time to open to humans as cosmic life of Non action Tao.