• Title/Summary/Keyword: complement vector

Search Result 43, Processing Time 0.018 seconds

Performance Improvement of Collaborative Filtering System Using Associative User′s Clustering Analysis for the Recalculation of Preference and Representative Attribute-Neighborhood (선호도 재계산을 위한 연관 사용자 군집 분석과 Representative Attribute -Neighborhood를 이용한 협력적 필터링 시스템의 성능향상)

  • Jung, Kyung-Yong;Kim, Jin-Su;Kim, Tae-Yong;Lee, Jung-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.287-296
    • /
    • 2003
  • There has been much research focused on collaborative filtering technique in Recommender System. However, these studies have shown the First-Rater Problem and the Sparsity Problem. The main purpose of this Paper is to solve these Problems. In this Paper, we suggest the user's predicting preference method using Bayesian estimated value and the associative user clustering for the recalculation of preference. In addition to this method, to complement a shortcoming, which doesn't regard the attribution of item, we use Representative Attribute-Neighborhood method that is used for the prediction when we find the similar neighborhood through extracting the representative attribution, which most affect the preference. We improved the efficiency by using the associative user's clustering analysis in order to calculate the preference of specific item within the cluster item vector to the collaborative filtering algorithm. Besides, for the problem of the Sparsity and First-Rater, through using Association Rule Hypergraph Partitioning algorithm associative users are clustered according to the genre. New users are classified into one of these genres by Naive Bayes classifier. In addition, in order to get the similarity value between users belonged to the classified genre and new users, and this paper allows the different estimated value to item which user evaluated through Naive Bayes learning. As applying the preference granted the estimated value to Pearson correlation coefficient, it can make the higher accuracy because the errors that cause the missing value come less. We evaluate our method on a large collaborative filtering database of user rating and it significantly outperforms previous proposed method.

Convergence Study in Development of Severity Adjustment Method for Death with Acute Myocardial Infarction Patients using Machine Learning (머신러닝을 이용한 급성심근경색증 환자의 퇴원 시 사망 중증도 보정 방법 개발에 대한 융복합 연구)

  • Baek, Seol-Kyung;Park, Hye-Jin;Kang, Sung-Hong;Choi, Joon-Young;Park, Jong-Ho
    • Journal of Digital Convergence
    • /
    • v.17 no.2
    • /
    • pp.217-230
    • /
    • 2019
  • This study was conducted to develop a customized severity-adjustment method and to evaluate their validity for acute myocardial infarction(AMI) patients to complement the limitations of the existing severity-adjustment method for comorbidities. For this purpose, the subjects of KCD-7 code I20.0 ~ I20.9, which is the main diagnosis of acute myocardial infarction were extracted using the Korean National Hospital Discharge In-depth Injury survey data from 2006 to 2015. Three tools were used for severity-adjustment method of comorbidities : CCI (charlson comorbidity index), ECI (Elixhauser comorbidity index) and the newly proposed CCS (Clinical Classification Software). The results showed that CCS was the best tool for the severity correction, and that support vector machine model was the most predictable. Therefore, we propose the use of the customized method of severity correction and machine learning techniques from this study for the future research on severity adjustment such as assessment of results of medical service.

Status of Groundwater Potential Mapping Research Using GIS and Machine Learning (GIS와 기계학습을 이용한 지하수 가능성도 작성 연구 현황)

  • Lee, Saro;Fetemeh, Rezaie
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1277-1290
    • /
    • 2020
  • Water resources which is formed of surface and groundwater, are considered as one of the pivotal natural resources worldwide. Since last century, the rapid population growth as well as accelerated industrialization and explosive urbanization lead to boost demand for groundwater for domestic, industrial and agricultural use. In fact, better management of groundwater can play crucial role in sustainable development; therefore, determining accurate location of groundwater based groundwater potential mapping is indispensable. In recent years, integration of machine learning techniques, Geographical Information System (GIS) and Remote Sensing (RS) are popular and effective methods employed for groundwater potential mapping. For determining the status of the integrated approach, a systematic review of 94 directly relevant papers were carried out over the six previous years (2015-2020). According to the literature review, the number of studies published annually increased rapidly over time. The total study area spanned 15 countries, and 85.1% of studies focused on Iran, India, China, South Korea, and Iraq. 20 variables were found to be frequently involved in groundwater potential investigations, of which 9 factors are almost always present namely slope, lithology (geology), land use/land cover (LU/LC), drainage/river density, altitude (elevation), topographic wetness index (TWI), distance from river, rainfall, and aspect. The data integration was carried random forest, support vector machine and boost regression tree among the machine learning techniques. Our study shows that for optimal results, groundwater mapping must be used as a tool to complement field work, rather than a low-cost substitute. Consequently, more study should be conducted to enhance the generalization and precision of groundwater potential map.