• Title/Summary/Keyword: compaction techniques

Search Result 61, Processing Time 0.022 seconds

RECONSTRUCTION OF SEVERE BUCCO-LINGUAL BONE RESORPTION AREA USING "RIDGE SPLITTING TECHNIQUE" (심한 협-설골 위축에서 치조골 수평 확장술을 이용한 골 재건)

  • Yeo, Duck-Sung;Lim, So-Yeon;Lee, Hyun-Jin;Ahn, Mi-Ra;Sohn, Dong-Seok
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.6
    • /
    • pp.590-594
    • /
    • 2006
  • Dental implant has become one of the important option for completely or partially edentulous patients, But it is challenging to reconstruct the severely atrophic ridge. Insufficient bone volume could restrict to place the wide and long implant and because of excessive interocclusal clearance, improper prosthetics could be produced. In this case bone augmentation for implant dentistry is necessary procedure to improve the insufficient bone volume. Therefore, bone augmentation or GBR is the most important procedure for successful implant placement and for ideal crown- root ratio. There are various bone augmentation techniques have been introduced recently; like block bone graft, distraction osteogenesis, inlay graft, onlay graft, etc.... In severe bucco-lingual resorption area, ridge splitting is the first choice of the treatment, because it provides a place for implantation and also has compaction effect. This technique may be indicated for sharp mandible and maxillary ridges in patients whose bone quantity is inadequate for primary stabilization. We report that the clinical experience of bone augmentation using ridge splitting technique in bucco-lingual bone resorption area.

The Analysis of Genome Database Compaction based on Sequence Similarity (시퀀스 유사도에 기반한 유전체 데이터베이스 압축 및 영향 분석)

  • Kwon, Sunyoung;Lee, Byunghan;Park, Seunghyun;Jo, Jeonghee;Yoon, Sungroh
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.4
    • /
    • pp.250-255
    • /
    • 2017
  • Given the explosion of genomic data and expansion of applications such as precision medicine, the importance of efficient genome-database management continues to grow. Traditional compression techniques may be effective in reducing the size of a database, but a new challenge follows in terms of performing operations such as comparison and searches on the compressed database. Based on that many genome databases typically have numerous duplicated or similar sequences, and that the runtime of genome analyses is normally proportional to the number of sequences in a database, we propose a technique that can compress a genome database by eliminating similar entries from the database. Through our experiments, we show that we can remove approximately 84% of sequences with 1% similarity threshold, accelerating the downstream classification tasks by approximately 10 times. We also confirm that our compression method does not significantly affect the accuracy of taxonomy diversity assessments or classification.

Suggestion for the Maintenance Program of the Sea Dike Using Geophysical Methods (지구물리학적 방법을 이용한 방조제 유지·관리 체계 제안)

  • Yong, Hwan-Ho;Cho, In-Ky;Song, Sung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.275-283
    • /
    • 2013
  • The sea dike is the most important facility of reclamation projects, and plays an important role in securing freshwater in the reservoir. Systematic research on practical approaches and data analysis techniques are lacking even though some geophysical methods such as electrical resistivity and self-potential surveys are included within the inspection processes. Hence, geophysical methods were considered for improvement of precision safety diagnosis methods after problems in the maintenance system have been identified, such as safety checks and precision safety diagnoses. In addition, geophysical methods customized according to variations in ambient environmental limiting factors such as pore pressure changes by tidal fluctuation, compaction characteristics of the fill materials, and the surface condition of the embankment were suggested.

Prediction of concrete compressive strength using non-destructive test results

  • Erdal, Hamit;Erdal, Mursel;Simsek, Osman;Erdal, Halil Ibrahim
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.407-417
    • /
    • 2018
  • Concrete which is a composite material is one of the most important construction materials. Compressive strength is a commonly used parameter for the assessment of concrete quality. Accurate prediction of concrete compressive strength is an important issue. In this study, we utilized an experimental procedure for the assessment of concrete quality. Firstly, the concrete mix was prepared according to C 20 type concrete, and slump of fresh concrete was about 20 cm. After the placement of fresh concrete to formworks, compaction was achieved using a vibrating screed. After 28 day period, a total of 100 core samples having 75 mm diameter were extracted. On the core samples pulse velocity determination tests and compressive strength tests were performed. Besides, Windsor probe penetration tests and Schmidt hammer tests were also performed. After setting up the data set, twelve artificial intelligence (AI) models compared for predicting the concrete compressive strength. These models can be divided into three categories (i) Functions (i.e., Linear Regression, Simple Linear Regression, Multilayer Perceptron, Support Vector Regression), (ii) Lazy-Learning Algorithms (i.e., IBk Linear NN Search, KStar, Locally Weighted Learning) (iii) Tree-Based Learning Algorithms (i.e., Decision Stump, Model Trees Regression, Random Forest, Random Tree, Reduced Error Pruning Tree). Four evaluation processes, four validation implements (i.e., 10-fold cross validation, 5-fold cross validation, 10% split sample validation & 20% split sample validation) are used to examine the performance of predictive models. This study shows that machine learning regression techniques are promising tools for predicting compressive strength of concrete.

Bit-Map Based Hybrid Fast IP Lookup Technique (비트-맵 기반의 혼합형 고속 IP 검색 기법)

  • Oh Seung-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.2
    • /
    • pp.244-254
    • /
    • 2006
  • This paper presents an efficient hybrid technique to compact the trie indexing the huge forward table small enough to be stored into cache for speeding up IP lookup. It combines two techniques, an encoding scheme called bit-map and a controlled-prefix expanding scheme to replace slow memory search with few fast-memory accesses and computations. For compaction, the bit-map represents each index and child pointer with one bit respectively. For example, when one node denotes n bits, the bit-map gives a high compression rate by consumes $2^{n-1}$ bits for $2^n$ index and child link pointers branched out of the node. The controlled-prefix expanding scheme determines the number of address bits represented by all root node of each trie's level. At this time, controlled-prefix scheme use a dynamic programming technique to get a smallest trie memory size with given number of trie's level. This paper proposes standard that can choose suitable trie structure depending on memory size of system and the required IP lookup speed presenting optimal memory size and the lookup speed according to trie level number.

  • PDF

Quantitative assessment of reclamation-dams from the sea by using combined seismic methods (해안 매립지 탄성파 탐사)

  • Kim Jung-Yul
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.85-100
    • /
    • 2002
  • This paper deals with a development of combined seismic methods, based on the application of Televiewer and seismic tomography, for the quantitative assessment of reclaimed body or dam at seashores in our county. The underground structure of reclaimed dam is very complex, mainly due to the unexpected exchange of rock fragments with the marine silty mud in conjunction with S.C.P. (Sand Compaction Pile) foundation, so that for several reasons only the use of Televiewer and seismic tomography for general application might not lead to a desirable resolution. Kinds of upgraded measuring and evaluation techniques for that are needed. For examples, a novel strategy for capturing the returning impulses from the outer side of casing plastic pipe is desired to be developed. For the tomograhy, one should be being more focussed on the study of raw data based on the wave propagation theory. In this paper, it is shown that such multidisciplinary approaches can be, by attempting to compare and jointly interpret the results from two methods, much efficient for understanding the reclaimed dam structure.

  • PDF

A Study on Magnetic Field Reduction Design Technique around 345 kV Transmission Line with 2-wire Set Passive Loop (2선식 수동루프를 이용한 345[kV] 송전선 주변의 자계저감 설계기법 연구)

  • Kim, Eung Sik
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.5
    • /
    • pp.10-17
    • /
    • 2021
  • The controversy over the risk of the human body being affected by electromagnetic fields emitted from 60 Hz power lines continues without end. There are currently no new studies or research progress being made in this direction that is notable, and the number of civil complaints is gradually increasing. The problem is that each study produces different results, among which the effect of exposure to magnetic fields on childhood leukemia is a major one. In Korea, an electrician who was maintaining a 22.9 kV power line died of leukemia, which has recently been recognized as an occupational disease. Methods to reduce magnetic fields from power lines include shielding with wire loops, incorporating split phases and compaction techniques, installing underground power lines, converting to high-voltage direct current (HVDC), and increasing the ground clearance of transmission towers. Depending on whether a separate power supply is needed or not, there are two types of wire loops: passive loop and active loop. Magnetic field reduction is currently done through underground power lines; however, the disadvantage of this process is high construction costs. Installing passive loops, with relatively low construction costs, leads to lower magnetic field reduction rates than installing underground cables and a weakness to not solving the landscape problem. This methodological study aims at designing methods and reducing the effects of 2-wire set loops-the simplest and most practical. Since the method proposed in this study has been designed after analyzing the distribution of complex electromagnetic fields near the expected loop installation location, a practical design can be implemented without the need for any difficult optimization programming.

Machine Learning Framework for Predicting Voids in the Mineral Aggregation in Asphalt Mixtures (아스팔트 혼합물의 골재 간극률 예측을 위한 기계학습 프레임워크)

  • Hyemin Park;Ilho Na;Hyunhwan Kim;Bongjun Ji
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.1
    • /
    • pp.17-25
    • /
    • 2024
  • The Voids in the Mineral Aggregate (VMA) within asphalt mixtures play a crucial role in defining the mixture's structural integrity, durability, and resistance to environmental factors. Accurate prediction and optimization of VMA are essential for enhancing the performance and longevity of asphalt pavements, particularly in varying climatic and environmental conditions. This study introduces a novel machine learning framework leveraging ensemble machine learning model for predicting VMA in asphalt mixtures. By analyzing a comprehensive set of variables, including aggregate size distribution, binder content, and compaction levels, our framework offers a more precise prediction of VMA than traditional single-model approaches. The use of advanced machine learning techniques not only surpasses the accuracy of conventional empirical methods but also significantly reduces the reliance on extensive laboratory testing. Our findings highlight the effectiveness of a data-driven approach in the field of asphalt mixture design, showcasing a path toward more efficient and sustainable pavement engineering practices. This research contributes to the advancement of predictive modeling in construction materials, offering valuable insights for the design and optimization of asphalt mixtures with optimal void characteristics.

Low-Cost CAP-type TDR Exploration Techniques for Leak Detection (누수탐지를 위한 저비용 CAP형 TDR 탐사기법)

  • Kim, Jin Man;Choi, Bong Hyuck;Cho, Jin Woo;Cho, Won Beom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1479-1487
    • /
    • 2013
  • The river levee collapse and flood damages are dramatically increased due to the floods which caused by abnormal weather nowadays. The counterplan like TDR(Time Domain Reflectometry) river levee leaking exploration technique is needed to that levee failure causes of levee failure such as levee failure by penetration, piping, inadequate levee materials selection, poor compaction are almost 52% of the failure. This research practiced various comparing experiments of existing TDR(probe and tube types) and developing CAP type TDR to evaluate acrylic small CAP mould and low-cost TDR levee leaking monitoring system which was used probe type TDR. As the result, evaluated TDR system had 20cm critical exploration performance which was a leaking exploration performance, The functional ratio of TDR exploration sensitivity of dry density was sensitive more than 3 times than dry density, and weathered granite soil foundation water contents(w)-dielectric constant(${\epsilon}$) corelation formula was suggested to measure functional ratio on developing cap type TDR system.

Geotechnical Engineering Progress with the Incheon Bridge Project

  • Cho, Sung-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.133-144
    • /
    • 2009
  • Incheon Bridge, 18.4 km long sea-crossing bridge, will be opened to the traffic in October 2009 and this will be the new landmark of the gearing up north-east Asia as well as the largest & longest bridge of Korea. Incheon Bridge is the integrated set of several special featured bridges including a magnificent cable-stayed girder bridge which has a main span of 800 m width to cross the navigation channel in and out of the Port of Incheon. Incheon Bridge is making an epoch of long-span bridge designs thanks to the fully application of the AASHTO LRFD (load & resistance factor design) to both the superstructures and the substructures. A state-of-the-art of the geotechnologies which were applied to the Incheon Bridge construction project is introduced. The most Large-diameter drilled shafts were penetrated into the bedrock to support the colossal superstructures. The bearing capacity and deformational characteristics of the foundations were verified through the world's largest static pile load test. 8 full-scale pilot piles were tested in both offshore site and onshore area prior to the commencement of constructions. Compressible load beyond 30,000 tonf pressed a single 3 m diameter foundation pile by means of bi-directional loading method including the Osterberg cell techniques. Detailed site investigation to characterize the subsurface properties had been carried out. Geotextile tubes, tied sheet pile walls, and trestles were utilized to overcome the very large tidal difference between ebb and flow at the foreshore site. 44 circular-cell type dolphins surround the piers near the navigation channel to protect the bridge against the collision with aberrant vessels. Each dolphin structure consists of the flat sheet piled wall and infilled aggregates to absorb the collision impact. Geo-centrifugal tests were performed to evaluate the behavior of the dolphin in the seabed and to verify the numerical model for the design. Rip-rap embankments on the seabed are expected to prevent the scouring of the foundation. Prefabricated vertical drains, sand compaction piles, deep cement mixings, horizontal natural-fiber drains, and other subsidiary methods were used to improve the soft ground for the site of abutments, toll plazas, and access roads. Light-weight backfill using EPS blocks helps to reduce the earth pressure behind the abutment on the soft ground. Some kinds of reinforced earth like as MSE using geosynthetics were utilized for the ring wall of the abutment. Soil steel bridges made of corrugated steel plates and engineered backfills were constructed for the open-cut tunnel and the culvert. Diverse experiences of advanced designs and constructions from the Incheon Bridge project have been propagated by relevant engineers and it is strongly expected that significant achievements in geotechnical engineering through this project will contribute to the national development of the longspan bridge technologies remarkably.

  • PDF