• Title/Summary/Keyword: compaction pressure

검색결과 290건 처리시간 0.022초

지르코니아 분말의 치밀화와 소결거동 : I. 가압에 따른 치밀화 응답 (Compaction and Sintering Behaviour of Zirconia Powders: I. Compaction Response)

  • 박홍채
    • 한국세라믹학회지
    • /
    • 제29권6호
    • /
    • pp.489-495
    • /
    • 1992
  • The continuous compaction response of zirconia powders prepared by different processing treatments was investigated. Though the yield point could be or not below 1 MPa, the change of slope was always observed at high pressure range around 60 MPa. Powder compaction was mainly governed by second compaction stage and compaction rate was decreased with increasing forming pressure. Rotary vacuum dried powder favored a high compaction density, whereas freeze dried and calcined powders favored an increase in the pressing efficiency. In order to extract more reliable information about powder compaction, it was necessary to use not only compaction response diagram but also compaction rate diagram.

  • PDF

타이어공기압에 따른 트랙터의 견인성능과 토양다짐 (The Effect of Tire Inflation Pressure on Soil Compaction and Tractive Performance of Tractor)

  • 박원엽;이규승
    • Journal of Biosystems Engineering
    • /
    • 제27권6호
    • /
    • pp.491-500
    • /
    • 2002
  • This study was carried out to investigate experimentally the effect of the tire inflation pressure of a tractor on soil compaction and tractive performance. Two kinds of field experiments were conducted using an agricultural tractor. One experiment is concerned with the tractive performance of the tractor at the three levels of tire inflation pressure; 50kpa, 100kpa and 200kpa, and the other one is about the soil compaction at the four levels of tire inflation pressure; 50kpa, 100kpa, 150kpa and 200kpa, at three different numbers of passes; 1, 3 and 5 passes. From the results of the field experiment, it was found that decreasing the tire inflation pressure decreased the motion resistance of tractor and increased the tractive force and tractive efficiency. The tractive and working performance of the tractor could be improved by the reduction of tire inflation pressure. Increasing the inflation pressure and the number of passes increased the soil compaction. Rate of compaction increased rapidly at the first pass and declined at subsequent passes. To reduce the effect of soil compaction for the whole field, it is recommended that tractor should follow the rut of the first pass from the subsequent passes, and decrease the inflation pressure of the driving tires up to allowable minimum level.

반복압축하의 응집된 알루미나 분말의 치밀화 (Densification of Aggregated Alumina Powder under Cyclin Compaction)

  • 김기태;손건석;서정
    • 한국세라믹학회지
    • /
    • 제29권2호
    • /
    • pp.136-142
    • /
    • 1992
  • The effects of cyclic stress, frequency and bias-pressure on densification of Al2O3 powder cyclic compaction are investigated. The effect of frequency was not significant on densification of Al2O3 powder under cyclic compaction. The higher the cyclic stress and the lower the bias pressure, the higher densification was achieved. To obtain a higher densification, cyclic compaction was more efficient than 1 stroke compaction. A densification equation was proposed to describe an cyclic time dependent pressure-volume relation for Al2O3 powder under cyclic compaction. This equation was obtained empirically, based on the pressure-volume equation proposed by Cooper and Eaton, the time dependent densification equation by Kim and Suh and experimental data for Al2O3 powder under cyclic compaction. The agreement between the proposed equation and experimental data for Al2O3 powder under cyclic compaction was very good.

  • PDF

콘크리트 암거에서의 뒷채움 다짐에 의한 동적토압 (Dynamic Earth Pressure of Concrete Culverts During Compaction of Backfill)

  • 노한성;최영철;김성환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.435-440
    • /
    • 2000
  • It is important to pay careful attention to construction backfill for the structural integrity of concrete box culvert. The stability of the surrounding soil is important to the structural performance of most culverts. Good compaction by the dynamic compaction roller with big capacity is as effective as good backfill materials to increase the structural integrity of culvert. However structural distress of the culvert could be occur due to the excessive earth pressure by dynamic compaction load. In this study, 16 box culverts were constructed with various compaction materials and construction methods. Three types of on-site soils such as subbase, subgrade and roadbed materials were used as backfill materials in the test program. Compaction methods were adapted based on the site conditions. In most cases, dynamic compaction rollers with 10 to 16 ton weights were used and vibration speed were applied from 2400 to 2500 rpm for the great compaction energy. Some backfill compactions with good quality soils were carried out to examine the effect of EPS(Expanded Polystyrene) panels with changes of compaction thickness. This paper presents the main results of the research conducted to access the engineering performance of the backfill materials. The characteristics of earth pressures are discussed. It is observed that subgrade and roadbed materials are needed more careful compaction than subbase materials. It is shown that EPS panels are effective to mitigate dynamic lateral earth pressure on the culverts. It is also obtained that the dynamic pressure depends on the soil properties. In addition, the coefficient of dynamic earth pressure (K$\sub$dyn/=ΔP$\sub$H/ ΔP$\sub$V/) during compaction is discussed.

  • PDF

점증하중에 의한 강성벽체에 작용하는 토압 (Earth Pressures Acting on the Rigid Wall under Incremental Load)

  • 전용백;권욱화
    • 한국산업융합학회 논문집
    • /
    • 제5권3호
    • /
    • pp.247-254
    • /
    • 2002
  • This study has researched the following conclusion to compare to the existing theory and to examine lateral earth pressure, which have measured to add incremental load on sandy soil, and were different in types of compaction by modeling earth pressure test. Lateral earth pressure by incremental load shows that it is increasing at depth forty four centimeters as 2/3H point for wall high, and under 2/3 H point the variation of earth pressure on incremental load is not conspicuous. Therefor, the more a position of surcharge load is close with fixed wall, the more a variation of lateral earth pressure marks considerably. According to relative compaction density of soil, lateral earth pressure turns up larger effective value for layer compaction test to a thickness of thirty three centimeters than layer compaction test to a thickness of twenty centimeters by the roller.

  • PDF

타이어의 동하중, 공기압 및 통과횟수가 토양다짐에 미치는 영향 (The Effect of Dynamic Load, Inflation Pressure and Number of Passes of Tire on Soil Compaction under the Tire)

  • 박원엽;이규승
    • Journal of Biosystems Engineering
    • /
    • 제27권1호
    • /
    • pp.1-10
    • /
    • 2002
  • This study was carried out to investigate experimentally the effect of three factors(dynamic load, inflation pressure and number of passes of tire) on soil compaction under the tire. The experiment were conducted with a 6.00R14 radial-ply tire for sandy loam soil using soil bin system. To evaluate the effect of three factors on soil compaction under the tire, the sinkage. density and volume of soil under the tire were measured fur the three levels of dynamic load(1.17kN, 2.35kN and 3.53kN), for the three levels of tire inflation pressure(103.42kPa, 206.84kPa and 413.67kPa), and for three different number of passes(1, 3 and 5). The results of this study can be summarized as follows : 1. As dynamic load, inflation pressure and number of passes of the tire increased, soil sinkage and density increased. and volume of soil decreased. Thus increase in dynamic load, inflation pressure and number of passes of the tire would increase soil compaction. 2. The effect of tire inflation pressure on sinkage. density and volume of soil under the tire was relatively less than that of the dynamic load. Therefore, it was concluded that dynamic load was more important factor affecting soil compaction in comparison to the inflation pressure of tire. 3. The effect of three different factors on sinkage, density and volume of soil decreased as the soil depth increase. Consequently, it was fecund that soil compaction at a shallow depth in soil was larger than that at deep place in soil.

An improved model of compaction grouting considering three-dimensional shearing failure and its engineering application

  • Li, Liang;Xiang, Zhou-Chen;Zou, Jin-Feng;Wang, Feng
    • Geomechanics and Engineering
    • /
    • 제19권3호
    • /
    • pp.217-227
    • /
    • 2019
  • This study focuses on an improved prediction model to determine the limiting grouting pressure of compaction grouting considering the ground surface upheaval, which is caused by the three-dimensional conical shearing failure. The 2D-dimensional failure curve in Zou and Xia (2016) was improved to a three-dimensional conical shearing failure for compaction grouting through coordinate rotation. The process of compaction grouting was considered as the cavity expansion in infinite Mohr-Coulomb (M-C) soil mass. The prediction model of limiting grouting pressure of compaction grouting was proposed with limit equilibrium principle, which was validated by comparing the results in El-Kelesh et al. (2001) and numerical method. Furthermore, using the proposed prediction model, the vertical and horizontal grouting tube techniques were adopted to deal with the subgrade settlement in Shao-huai highway at Hunan Provence of China. The engineering applicability and effectiveness of the proposed model were verified by the field test. The research on the prediction model for the limiting grouting pressure of compaction grouting provides practical example to the rapid treatment technology of subgrade settlement.

분말야금 공정 중 분말 성형압력이 밀도와 치수에 미치는 영향 (The Influence of Powder Compaction Pressure on Density and Dimension of a Powder Metallurgy Product)

  • 조주현;권영삼;정성택;이민철;전만수
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.244-249
    • /
    • 2007
  • The influence of powder compaction pressure on the hydraulic cylinder block fabricated by powder metallurgy is investigated in this study. The cylinder block is compacted with powder under various compaction pressures and then sintered, and its density and dimensions are measured to reveal the relationship of the powder compaction pressure with the product quality. Moreover, finite element analyses of the density distributions are carried out under the same conditions with the experiments and the predicted results are compared with the measured ones.

뒷채움 시공시의 다짐토압 특성 (Characteristics of Developed Earth Pressure by Backfill Compaction)

  • 노한성
    • 한국지반공학회논문집
    • /
    • 제17권6호
    • /
    • pp.163-171
    • /
    • 2001
  • 콘크리트 구조물과 토공의 인접부인 구조물 뒷채움의 구조적 연속성을 위해서는 뒷채움 시공이 중요하다. 뒷채움부의 구조적 연속성을 증가시키기 위해서는 양질의 뒷채움재 사용과 대형 진동다짐장비에 의한 정밀다짐이 효과적이다. 그러나 정밀다짐시에 발생하는 과도한 토압에 의해 암거 구조물에 구조적 결함이 발생할 수 있다. 본 연구에서는 다짐재와 다짐방법을 변화시키면서 2개소의 암거를 건설하였다. 뒷채움재로는 선택층재와 노상토재를 사용하였다. 뒷채움 다짐시에 큰 다짐에너지를 얻기 위하여 대부분의 경우 총중량 11~12톤의 다짐롤러를 2000rpm 에서 2400rpm의 주파수로 적용하였다. 노상토를 사용하여 뒷채움 시공을 하는 경우에는 충격완화재를 설치하여 동적 수평하중에 미치는 영향을 분석하였다. 충격완화재로는 EPS재와 타이어 칩을 사용한 패널들을 사용하였으며, 뒷채움 시공시에 이들 충격완화재를 암거의 외벽체에 부탁하였다. 본 논문에서는 콘크리트 암거의 뒷채움 시공시에 발생하는 동적지응력 특성을 기술하였다. 계측 결과, 다짐하중에 의한 수직토압과 수평토압의 크기는 다짐재료, 다짐 측정깊이 및 다짐방법에 의존하고 있었다. 뒷채움 다짐시에는 정적토압계수 보다 큰 동적토압계수$(\DeltaK_{dyn}=\DeltaK\sigma_h\DeltaK\sigma_v)$를 나타내고 있어 동적토압에 의해 암거에 유해한 영향을 줄 수 있다. 충격완화재 EPS(t=10cm)와 고무계(t=5cm)는 암거 벽체에 작용하는 동적 수평토압을 경감시키는데 효과적인 것을 알았다.

  • PDF

진동롤러에 의한 다짐방법이 인접구조물의 다짐토압에 미치는 영향 (Effect of Compaction Method on Induced Earth Pressure Using Dynamic Compaction Roller)

  • 노한성
    • 한국도로학회논문집
    • /
    • 제3권4호
    • /
    • pp.127-136
    • /
    • 2001
  • 콘크리트 암거와 같은 지중구조물의 뒷채움시에 부등침하를 줄이기 위해서는 양질의 뒷채움 재료사용과 대형진동 다짐장비를 이용한 정밀한 다짐을 실시하는 것이 중요하다. 또한 효과적인 정밀 다짐은 진동 롤러의 강한 진동을 함께 구조물부에 근접하여 다지는 것이 필요하다. 그러나, 이와 같은 다짐방법은 과도한 충격하중 발생으로 구조물의 벽체균열 발생을 유발할 수 있다. 본 논문에서는 콘크리트 암거의 뒷채움 시공을 위하여 충격완화재의 종류와 다짐방법을 변화하여 다짐시의 구조물에 발생하는 다짐토압을 현장계측을 통하여 분석하였다. 타이어칩과 발포 폴리 스틸렌을 사용한 패널들을 뒷채움 다짐시공전 암거 벽면에 부착하였다. 충격완화재 Type A(Rubber)와 Type B(EPS)의 성능 비교를 위한 실내시험 결과 Type A는 Type B보다 작은 탄성계수와 큰 재료감쇠를 가지고 있어 보다 큰 충격완화효과를 기대할 수 있는 것으로 나타났다. 다짐장비는 대부분 큰 다짐에너지를 위하여 고주파수인 30Hz를 적용하였다. 현장계측 결과로부터 다짐하중에 의한 동적 수평토압의 크기는 다짐장비의 가진여부, 측정깊이, 다짐장비 이격거리 및 다짐방향에 의존하고 있었다. 암거의 동적 수평토압 측정결과로부터 롤러 다짐장비를 콘크리트 구조물에 직각방향으로 다짐작업을 실시하는 것이 수평방향으로 다짐하는 것 보다 다짐효과를 증가하는 것으로 나타났다.

  • PDF