• Title/Summary/Keyword: compacted materials

Search Result 182, Processing Time 0.027 seconds

Manufacturing and Evaluation of the Properties of Hybrid Bulk Material by Shock-compaction of Nanocrystalline Cu-Ni Mixed Powder (나노 구리-니켈 혼합분말의 충격압축법을 통한 복합벌크재의 제조 및 특성평가)

  • Kim, Wooyeol;Ahn, Dong-Hyun;Park, Lee Ju;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.21 no.3
    • /
    • pp.196-201
    • /
    • 2014
  • In this study, nanocrystalline Cu-Ni bulk materials with various compositions were cold compacted by a shock compaction method using a single-stage gas gun system. Since the oxide layers on powder surface disturbs bonding between powder particles during the shock compaction process, each nanopowder was hydrogen-reduced to remove the oxide layers. X-ray peak analysis shows that hydrogen reduction successfully removed the oxide layers from the nano powders. For the shock compaction process, mixed powder samples with various compositions were prepared using a roller mixer. After the shock compaction process, the density of specimens increased up to 95% of the relative density. Longitudinal cross-sections of the shock compacted specimen demonstrates that a boundary between two powders are clearly distinguished and agglomerated powder particles remained in the compacted bulk. Internal crack tended to decrease with an increase in volumetric ratio of nano Cu powders in compacted bulk, showing that nano Cu powders has a higher coherency than nano Ni powders. On the other hand, hardness results are dominated by volume fraction of the nano Ni powder. The crystalline size of the shock compacted bulk materials was greatly reduced from the initial powder crystalline size since the shock wave severely deformed the powders.

Modeling of mechanical properties of roller compacted concrete containing RHA using ANFIS

  • Vahidi, Ebrahim Khalilzadeh;Malekabadi, Maryam Mokhtari;Rezaei, Abbas;Roshani, Mohammad Mahdi;Roshani, Gholam Hossein
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.435-442
    • /
    • 2017
  • In recent years, the use of supplementary cementing materials, especially in addition to concrete, has been the subject of many researches. Rice husk ash (RHA) is one of these materials that in this research, is added to the roller compacted concrete as one of the pozzolanic materials. This paper evaluates how different contents of RHA added to the roller compacted concrete pavement specimens, can influence on the strength and permeability. The results are compared to the control samples and determined optimal level of RHA replacement. As it was expected, RHA as supplementary cementitious materials, improved mechanical properties of roller compacted concrete pavement (RCCP). Also, the application of adaptive neuro-fuzzy inference system (ANFIS) in predicting the permeability and compressive strength is investigated. The obtained results shows that the predicted value by this model is in good agreement with the experimental, which shows the proposed ANFIS model is a useful, reliable, fast and cheap tool to predict the permeability and compressive strength. A mean relative error percentage (MRE %) less than 1.1% is obtained for the proposed ANFIS model. Also, the test results and performed modeling show that the optimal value for obtaining the maximum compressive strength and minimum permeability is offered by substituting 9% and 18% of the cement by RHA, respectively.

Effect of the compacting additives on the Discharge Characteristics of the Negative Electrode for Ni-MH Battery (니켈-수소저장합금전지 음극의 방전특성에 미치는 성형첨가제의 영향)

  • Jung, Jae-Han;Lee, Han-Ho;Kim, Dong-Myung;Lee, Kee-Young;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.6 no.2
    • /
    • pp.65-73
    • /
    • 1995
  • Negative electrode was prepared by mixing $Ti_{0.7}Zr_{0.3}Cr_{0.3}Mn_{0.3}V_{0.6}Ni_{0.8}$ alloy powder with copper or nickel powder and pressing in the air. The cycled electrodes were analyzed with SEM, potentiostat and electrochemical impedance spectroscopy. It was found that the Cu-compacted electrode showed better low temperature dischargeability and higher rate capability than Ni-compacted electrode. From SEM analysis of the cycled electrode compacted with copper powder, it was observed that the surface of MH particles was covered with copper grains and whisker precipitated from electrolyte after dissolution during cell test. It is found that the improved electrode characteristics are attributed to the copper layer on MH particles deposited by dissolution and precipitation(DP) process.

  • PDF

Bi-materials of Al-Mg Alloy Reinforced with/without SiC and Al2O3 Particles; Processing and Mechanical Properties

  • Chang, Si-Young;Cho, Han-Gyoung;Kim, Yang-Do
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.354-361
    • /
    • 2007
  • The bi-materials with Al-Mg alloy and its composites reinforced with SiC and $Al_2O_3$ particles were prepared by conventional powder metallurgy method. The A1-5 wt%Mg and composite mixtures were compacted under $150{\sim}450\;MPa$, and then the mixtures compacted under 400 MPa were sintered at $773{\sim}1173K$ for 5h. The obtained bi-materials with Al-Mg/SiCp composite showed the higher relative density than those with $Al-Mg/Al_2O_3$ composite after compaction and sintering. Based on the results, the bi-materials compacted under 400 MPa and sintered at 873K for 5h were used for mechanical tests. In the composite side of bi-materials, the SiC particles were densely distributed compared to the $Al_2O_3$ particles. The bi-materials with Al-Mg/SiC composite showed the higher micro-hardness than those with $Al-Mg/Al_2O_3$ composite. The mechanical properties were evaluated by the compressive test. The bi-materials revealed almost the same value of 0.2% proof stress with Al-Mg alloy. Their compressive strength was lower than that of Al-Mg alloy. Moreover, impact absorbed energy of bi-materials was smaller than that of composite. However, the bi-materials with Al-Mg/SiCp composite particularly showed almost similar impact absorbed energy to $Al-Mg/Al_2O_3$ composite. From the observation of microstructure, it was deduced that the bi-materials was preferentially fractured through micro-interface between matrix and composite in the vicinity of macro-interface.

Ultrasonic Characteristics of Degraded Compacted Graphite Iron from 873 to 1,273 K (873~1,273 K에서 열화된 강화흑연강(Compacted Graphite Iron, CGI)의 초음파특성)

  • Lee, Soo-Chul;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.72-78
    • /
    • 2013
  • Compacted graphite iron 340 was carried out the heat treatment from 873 to 1,273 K. Compacted graphite iron 340 was evaluated relationship between the sound velocity, the attenuation coefficient and the tensile strength. The obtained results are as following. The signal strength of C scan images were weak according to increasing of heat treatment temperature and time. The amplitude of A scan and B scan was also low. This can be cause that the graphite was grown into the type of vermicular, and the many of grain boundary with ultrasound scattering were increase. The sound velocity was depend upon the heat treatment temperature and time, the attenuation coefficient had nothing to do with the temperature and time. The higher the heat treatment temperature, the tensile strength and the sound velocity were decreased. However, the tensile strength was proportional to the sound velocity. The higher tensile strength, the faster the sound velocity.

Evaluation of Mechanical Properties for the Compacted Bentonite Buffer Materials (압축 벤토나이트 완충재의 역학 물성 평가)

  • Yoon, Seok;Hong, Chang-Ho;Kim, Taehyun;Kim, Jin-Seop
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.10
    • /
    • pp.5-11
    • /
    • 2021
  • The compacted bentonite buffer is one of the most important components in an engineered barrier system (EBS) to dispose of high-level radioactive waste (HLW) produced by nuclear power generation. The compacted bentonite buffer has a crucial role in protecting the disposal canister against the external impact and penetration of groundwater, so it has to satisfy the thermal-hydraulic-mechanical requirements. Even though there have been various researches on the investigation of thermal-hydraulic properties, few studies have been conducted to evaluate mechanical properties for the compacted bentonite buffer. For this reason, this paper conducted a series of unconfined compression tests and obtained mechanical properties such as unconfined compressive strength, elastic modulus, and void ratio of Korean compacted bentonite specimens with different water content and dry density values. The unconfined compressive strength and elastic modulus increased, and the Poisson's ratio decreased a little with increasing dry density. It showed that unconfined compressive strength and elastic modulus were proportional to dry density. However, there was not a remarkable correlation between mechanical properties and water content.

Study of the Anisotropy of the Roller Compacted Concrete (RCC) for Pavement

  • Zdiri, Mustapha;Abriak, Nor-edine;Ouezdou, Mongi Ben;Neji, Jamel
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.45-49
    • /
    • 2010
  • The roller compacted concrete (RCC) is supposed to be isotropic, whereas the compaction of this material, which is achieved using the same machines used for the soil, appears only unidirectional, making the RCC an anisotropic material. In this experimental work, the influence of the phenomenon of compaction on the isotropy of the RCC is studied. This study was carried out through an evaluation of the compressive strengths and ultrasonic tests which were used for measurements of the elastic modulus and the dynamic Poisson's ratio of the RCC as well as a qualitative judgement of the RCC aspect at the hardened state. The results of this work proved the anisotropy of the RCC and they showed the sensitivity of the mechanical strengths and the elastic modulus to the compaction direction.

Mechanical and Durability Performance of Roller-Compacted Concrete with Fly Ash for Dam Applications

  • Park, Chan-Gi;Yoon, Jong-Whan;Kim, Wan-Young;Won, Jong-Pil
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.57-61
    • /
    • 2007
  • This study investigated the mechanical and durability performance of roller-compacted concrete (RCC) with fly ash for dam applications. A test program studied the effects on the properties of fresh and hardened RCC with fly ash replacement ratio, as well as the long-term durability of the resulting mixture. Fly ash replaced 20, 30, 40, and 50% by mass of the cement. Laboratory tests of the compressive strength, splitting tensile strength, shear strength, chloride ion permeability, abrasion, and drying shrinkage were conducted. The test results demonstrated that 30% fly ash replacement is an optimum level, and that this mixture has excellent mechanical and durability properties.