• Title/Summary/Keyword: communication delay

Search Result 2,177, Processing Time 0.037 seconds

A Digital DLL with 4-Cycle Lock Time and 1/4 NAND-Delay Accuracy

  • Kim, Sung-Yong;Jin, Xuefan;Chun, Jung-Hoon;Kwon, Kee-Won
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.387-394
    • /
    • 2016
  • This paper presents a fully digital delay locked loop (DLL) that can acquire lock in four clock cycles with a resolution of a 1/4 NAND-delay. The proposed DLL with a multi-dither-free phase detector acquires the initial lock in four clock cycles with 1/2 NAND-delay. Then, it utilizes a multi-dither-free phase detector, a region accumulator, and phase blenders, to improve the resolution to a 1/4 NAND-delay. The region accumulator which continuously steers the control registers and the phase blender, adaptively controls the tracking bandwidth depending on the amount of jitter, and effectively suppresses the dithering jitter. Fabricated in a 65 nm CMOS process, the proposed DLL occupies $0.0432mm^2$, and consumes 3.7 mW from a 1.2-V supply at 2 GHz.

Performance Analysis of Wireless Communication Networks for Smart Metering Implemented with Channel Coding Adopted Multi-Purpose Wireless Communication Chip (오류 정정 부호를 사용하는 범용 무선 통신 칩으로 구현된 스마트 미터링 무선 네트워크 시스템 성능 분석)

  • Wang, Hanho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.321-326
    • /
    • 2015
  • Smart metering is one of the most implementable internet-of-thing service. In order to implement the smart metering, a wireless communication network should be newly designed and evaluated so as to satisfy quality-of-service of smart metering. In this paper, we consider a wireless network for the smart metering implemented with multi-purpose wireless chips and channel coding-functioned micro controllers. Especially, channel coding is newly adopted to improve successful frame transmission probability. Based on the successful frame transmission probability, average transmission delay and delay violation probability are analyzed. Using the analytical results, service coverage expansion is evaluated. Through the delay analysis, service feasibility can be verified. According to our results, channel coding needs not to be utilized to improve the delay performance if the smart metering service coverage is several tens of meters. However, if more coverage is required, chanel coding adoption definitely reduces the delay time and improve the service feasibility.

Adaptive Time Delay Compensation Process in Networked Control System

  • Kim, Yong-Gil;Moon, Kyung-Il
    • International journal of advanced smart convergence
    • /
    • v.5 no.1
    • /
    • pp.34-46
    • /
    • 2016
  • Networked Control System (NCS) has evolved in the past decade through the advances in communication technology. The problems involved in NCS are broadly classified into two categories namely network issues due to network and control performance due to system network. The network problems are related to bandwidth allocation, scheduling and network security, and the control problems deal with stability analysis and delay compensation. Various delays with variable length occur due to sharing a common network medium. Though most delays are very less and mostly neglected, the network induced delay is significant. It occurs when sensors, actuators, and controllers exchange data packet across the communication network. Networked induced delay arises from sensor to controller and controller to actuator. This paper presents an adaptive delay compensation process for efficient control. Though Smith predictor has been commonly used as dead time compensators, it is not adaptive to match with the stochastic behavior of network characteristics. Time delay adaptive compensation gives an effective control to solve dead time, and creates a virtual environment using the plant model and computed delay which is used to compensate the effect of delay. This approach is simulated using TrueTime simulator that is a Matlab Simulink based simulator facilitates co-simulation of controller task execution in real-time kernels, network transmissions and continuous plant dynamics for NCS. The simulation result is analyzed, and it is confirmed that this control provides good performance.

Throughput and Delay of Single-Hop and Two-Hop Aeronautical Communication Networks

  • Wang, Yufeng;Erturk, Mustafa Cenk;Liu, Jinxing;Ra, In-ho;Sankar, Ravi;Morgera, Salvatore
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.58-66
    • /
    • 2015
  • Aeronautical communication networks (ACN) is an emerging concept in which aeronautical stations (AS) are considered as a part of multi-tier network for the future wireless communication system. An AS could be a commercial plane, helicopter, or any other low orbit station, i.e., Unmanned air vehicle, high altitude platform. The goal of ACN is to provide high throughput and cost effective communication network for aeronautical applications (i.e., Air traffic control (ATC), air traffic management (ATM) communications, and commercial in-flight Internet activities), and terrestrial networks by using aeronautical platforms as a backbone. In this paper, we investigate the issues about connectivity, throughput, and delay in ACN. First, topology of ACN is presented as a simple mobile ad hoc network and connectivity analysis is provided. Then, by using information obtained from connectivity analysis, we investigate two communication models, i.e., single-hop and two-hop, in which each source AS is communicating with its destination AS with or without the help of intermediate relay AS, respectively. In our throughput analysis, we use the method of finding the maximum number of concurrent successful transmissions to derive ACN throughput upper bounds for the two communication models. We conclude that the two-hop model achieves greater throughput scaling than the single-hop model for ACN and multi-hop models cannot achieve better throughput scaling than two-hop model. Furthermore, since delay issue is more salient in two-hop communication, we characterize the delay performance and derive the closed-form average end-to-end delay for the two-hop model. Finally, computer simulations are performed and it is shown that ACN is robust in terms of throughput and delay performances.

Closed-loop Feedback Control for Enhancing QoS in Real-time communication Networks

  • Kim, Hyung-Seok;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.40.1-40
    • /
    • 2001
  • In this paper, control theoretic approaches are proposed to guarantee QoS (Quality of Series) such as packet delay and packet loss of real-time traffic in high-speed communication network. Characteristics of variable rate real-time traÆc in communication networks are described. The mathematical model describing networks including source and destination nodes are suggested. By a traffic control mechanism, it is shown that worst-case end-to-end transfer delay of traffic can be controlled and packet loss can be prevented. The simulation shows results of delay control and buer level control to raise QoS in realtime traffic.

  • PDF

Automatic carrier phase delay synchronization of PGC demodulation algorithm in fiber-optic interferometric sensors

  • Hou, Changbo;Guo, Shuai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2891-2903
    • /
    • 2020
  • Phase-generated carrier (PGC) demodulation algorithm is the main demodulation methods in Fiber-optic interferometric sensors (FOISs). The conventional PGC demodulation algorithms are influenced by the carrier phase delay between the interference signal and the carrier signal. In this paper, an automatic carrier phase delay synchronization (CPDS) algorithm based on orthogonal phase-locked technique is proposed. The proposed algorithm can calculate the carrier phase delay value. Then the carrier phase delay can be compensated by adjusting the initial phase of the fundamental carrier and the second-harmonic carrier. The simulation results demonstrate the influence of the carrier phase delay on the demodulation performance. PGC-Arctan demodulation system based on CPDS algorithm is implemented on SoC. The experimental results show that the proposed algorithm is able to obtain and eliminate the carrier phase delay. In comparison to the conventional demodulation algorithm, the signal-to-noise and distortion ratio (SINAD) of the proposed algorithm increases 55.99dB.

Measurement-Based Propagation Channel Characteristics for Millimeter-Wave 5G Giga Communication Systems

  • Lee, Juyul;Liang, Jinyi;Kim, Myung-Don;Park, Jae-Joon;Park, Bonghyuk;Chung, Hyun Kyu
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1031-1041
    • /
    • 2016
  • This paper presents millimeter-wave (mmWave) propagation characteristics and channel model parameters including path loss, delay, and angular properties based on 28 GHz and 38 GHz field measurement data. We conducted measurement campaigns in both outdoor and indoor at the best potential hotspots. In particular, the model parameters are compared to sub-6 GHz parameters, and system design issues are considered for mmWave 5G Giga communications. For path loss modeling, we derived parameters for both the close-in free space model and the alpha-beta-gamma model. For multipath models, we extracted delay and angular dispersion characteristics including clustering results.

Performance on the Beam-Switched Demand Assigned Multiple Access for the Packet Satellite Communication (패킷 위성통신의 빔스위칭 요구할당 다중 접속 방식에 대한 성능 연구)

  • 김덕년;김재명
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.10
    • /
    • pp.1462-1470
    • /
    • 1989
  • This paper aims at investigating the Demand Assigned Multiple Access(DAMA) system for the packet-switched Satellite Communication. An onboard processor of the multisport beam satellite incorporates the ground controller to macimize the packet transmissions for each slot. 'Request Following' trnasmission mode is introduced as a transmission strategy of ground station under the control of its zone controller. The combined scheme of reservation channel access and contention channel access was proposed by Lee & Mark[3] for improving the Delay-Throughput performance. Our scheme provides less communication delay of approximately max. 200msec for achieving the corresponding throughput than the Lee & Mark's work does. Delay versus Throughput curves as well as Delay versus Traffic parameter curves are obtained. Numerical results obtained through the analysis and by the computer simulation show that the proposed scheme provides the low average packer delay even under the condition that the number of transponders (M)is below the half of the number of zones(N).

  • PDF

A Study on DOA and Delay Time Presumption based on Average Method (평균방법에 근거한 DOA와 지연시간추정에 관한 연구)

  • 이관형;송우영
    • Journal of the Korea Society for Simulation
    • /
    • v.13 no.2
    • /
    • pp.1-12
    • /
    • 2004
  • This paper estimated the arrival angle and electric wave delay time using the space method law and the directions of arrival (DOA) estimation algorithm in case of signal correlation. Space method law is the method used to repress cross correlation before applying the weight value to the receiving signal. The values of the diagonal elements in the correlation matrix were averaged to replace as the diagonal elements value. In the area of wireless communication or mobile communication, there are high correlations in case of low delay time difference in multiple waves. This causes the quality of the communication to drop due to interference with the desired signal elements. This paper estimated the arrival angle and electric wave delay time using the space method law and the MUSIC algorithm. With the arrival angle algorithm, the arrival angle cannot be estimated below 5 in case of signal correlations because the angle resolution capacity decreases accordingly. The super resolution capacity was estimated to determine the arrival angle below 5 in this paper. In addition, the proposed algorithm estimated the short delay time difference to be below 20ns.

  • PDF

Development of communication delay model for Profibus token pssing Protocol (Profibus token pass ing protocol의 통신지연 모델 개발)

  • Kim, H. H.;Lee, K. C.;Lee, S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.470-473
    • /
    • 2002
  • Most networks for automation are tuned to an expected traffic at their design stage. During their actual operations, however, the networks experience considerable changes in traffic from time to time. These traffic changes caused by common events like machine failure and production schedule change may adversely affect the network performance and, in turn, the performance of the connected devices. This paper presents communication delay model for Profibus token passing protocol, and introduces TTR selection methods to maintain a uniform level of network performance at all stations under changing network traffic.

  • PDF