• Title/Summary/Keyword: common spatial pattern (CSP)

Search Result 19, Processing Time 0.018 seconds

Filter Selection Method Using CSP and LDA for Filter-bank based BCI Systems (필터 뱅크 기반 BCI 시스템을 위한 CSP와 LDA를 이용한 필터 선택 방법)

  • Park, Geun-Ho;Lee, Yu-Ri;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.197-206
    • /
    • 2014
  • Motor imagery based Brain-computer Interface(BCI), which has recently attracted attention, is the technique for decoding the user's voluntary motor intention using Electroencephalography(EEG). For classifying the motor imagery, event-related desynchronization(ERD), which is the phenomenon of EEG voltage drop at sensorimotor area in ${\mu}$-band(8-13Hz), has been generally used but this method are not free from the performance degradation of the BCI system because EEG has low spatial resolution and shows different ERD-appearing band according to users. Common spatial pattern(CSP) was proposed to solve the low spatial resolution problem but it has a disadvantage of being very sensitive to frequency-band selection. Discriminative filter bank common spatial pattern(DFBCSP) tried to solve the frequency-band selection problem by using the Fisher ratio of the averaged EEG signal power and establishing discriminative filter bank(DFB) which only includes the feature frequency-band. However, we found that DFB might not include the proper filters showing the spatial pattern of ERD. To solve this problem, we apply a band-selection process using CSP feature vectors and linear discriminant analysis to DFBCSP instead of the averaged EEG signal power. The filter selection results and the classification accuracies of the existing and the proposed methods show that the CSP feature is more effective than signal power feature.

Filter-Bank Based Regularized Common Spatial Pattern for Classification of Motor Imagery EEG (동작 상상 EEG 분류를 위한 필터 뱅크 기반 정규화 공통 공간 패턴)

  • Park, Sang-Hoon;Kim, Ha-Young;Lee, David;Lee, Sang-Goog
    • Journal of KIISE
    • /
    • v.44 no.6
    • /
    • pp.587-594
    • /
    • 2017
  • Recently, motor imagery electroencephalogram(EEG) based Brain-Computer Interface(BCI) systems have received a significant amount of attention in various fields, including medicine and engineering. The Common Spatial Pattern(CSP) algorithm is the most commonly-used method to extract the features from motor imagery EEG. However, the CSP algorithm has limited applicability in Small-Sample Setting(SSS) situations because these situations rely on a covariance matrix. In addition, large differences in performance depend on the frequency bands that are being used. To address these problems, 4-40Hz band EEG signals are divided using nine filter-banks and Regularized CSP(R-CSP) is applied to individual frequency bands. Then, the Mutual Information-Based Individual Feature(MIBIF) algorithm is applied to the features of R-CSP for selecting discriminative features. Thereafter, selected features are used as inputs of the classifier Least Square Support Vector Machine(LS-SVM). The proposed method yielded a classification accuracy of 87.5%, 100%, 63.78%, 82.14%, and 86.11% in five subjects("aa", "al", "av", "aw", and "ay", respectively) for BCI competition III dataset IVa by using 18 channels in the vicinity of the motor area of the cerebral cortex. The proposed method improved the mean classification accuracy by 16.21%, 10.77% and 3.32% compared to the CSP, R-CSP and FBCSP, respectively The proposed method shows a particularly excellent performance in the SSS situation.

Strong Uncorrelated Transform Applied to Spatially Distant Channel EEG Data

  • Kim, Youngjoo;Park, Cheolsoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.97-102
    • /
    • 2015
  • In this paper, an extension of the standard common spatial pattern (CSP) algorithm using the strong uncorrelated transform (SUT) is used in order to extract the features for an accurate classification of the left- and right-hand motor imagery tasks. The algorithm is designed to analyze the complex data, which can preserve the additional information of the relationship between the two electroencephalogram (EEG) data from distant channels. This is based on the fact that distant regions of the brain are spatially distributed spatially and related, as in a network. The real-world left- and right-hand motor imagery EEG data was acquired through the Physionet database and the support vector machine (SVM) was used as a classifier to test the proposed method. The results showed that extracting the features of the pair-wise channel data using the strong uncorrelated transform complex common spatial pattern (SUTCCSP) provides a higher classification rate compared to the standard CSP algorithm.

Comparative Study on Feature Extraction Algorithms for EEG Based Brain-Computer Interface (뇌전도 기반 뇌-컴퓨터 인터페이스의 특징 추출 알고리즘 비교 연구)

  • Cho, Ho-Hyun;Ahn, Min-Kyu;Jun, Sung-Chan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.142-145
    • /
    • 2011
  • 뇌전도 기반 뇌-컴퓨터 인터페이스 기술은 신체 움직임이 불가능하거나 불편한 사람에게 새로운 의사전달 수단이 될 수 있으며 일반인에게도 상상만으로 컴퓨터 혹은 기계에 명령을 내릴 수 있게 하는 기술이다. 본 논문에서는 뇌-컴퓨터 인터페이스 연구 분야에 잘 알려진 Common Spatial Pattern (CSP), Invariant Common Spatial Pattern (iCSP) 그리고 Common Spatio-Spectral Pattern (CSSP) 알고리즘들의 성능을 비교 분석하였고, CSSP에 불변성(invariant)을 고려한 iCSSP를 제안하였다. 9명의 피험자로부터 상상움직임 실험을 통해 18셋의 뇌전도 데이터를 측정하였고, 4가지 알고리즘들을 성능 면에서 비교하였다. 그 결과 CSSP의 성능과 차이가 크지는 않지만, 본 연구에서 제안한 노이즈를 고려하여 최적의 필터를 구성하는 iCSSP에 대하여 더 나은 성능을 보여주는 결과들을 확인할 수 있었다.

Parallel Model Feature Extraction to Improve Performance of a BCI System (BCI 시스템의 성능 개선을 위한 병렬 모델 특징 추출)

  • Chum, Pharino;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.1022-1028
    • /
    • 2013
  • It is well knowns that based on the CSP (Common Spatial Pattern) algorithm, the linear projection of an EEG (Electroencephalography) signal can be made to spaces that optimize the discriminant between two patterns. Sharing disadvantages from linear time invariant systems, CSP suffers from the non-stationary nature of EEGs causing the performance of the classification in a BCI (Brain-Computer Interface) system to drop significantly when comparing the training data and test data. The author has suggested a simple idea based on the parallel model of CSP filters to improve the performance of BCI systems. The model was tested with a simple CSP algorithm (without any elaborate regularizing methods) and a perceptron learning algorithm as a classifier to determine the improvement of the system. The simulation showed that the parallel model could improve classification performance by over 10% compared to conventional CSP methods.

Real-time BCI for imagery movement and Classification for uncued EEG signal (상상 움직임에 대한 실시간 뇌전도 뇌 컴퓨터 상호작용, 큐 없는 상상 움직임에서의 뇌 신호 분류)

  • Kang, Sung-Wook;Jun, Sung-Chan
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.642-645
    • /
    • 2009
  • Brain Computer Interface (BCI) is a communication pathway between devices (computers) and human brain. It treats brain signals in real-time basis and discriminates some information of what human brain is doing. In this work, we develop a EEG BCI system using a feature extraction such as common spatial pattern (CSP) and a classifier using Fisher linear discriminant analysis (FLDA). Two-class EEG motor imagery movement datasets with both cued and uncued are tested to verify its feasibility.

  • PDF

Optimal Facial Emotion Feature Analysis Method based on ASM-LK Optical Flow (ASM-LK Optical Flow 기반 최적 얼굴정서 특징분석 기법)

  • Ko, Kwang-Eun;Park, Seung-Min;Park, Jun-Heong;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.512-517
    • /
    • 2011
  • In this paper, we propose an Active Shape Model (ASM) and Lucas-Kanade (LK) optical flow-based feature extraction and analysis method for analyzing the emotional features from facial images. Considering the facial emotion feature regions are described by Facial Action Coding System, we construct the feature-related shape models based on the combination of landmarks and extract the LK optical flow vectors at each landmarks based on the centre pixels of motion vector window. The facial emotion features are modelled by the combination of the optical flow vectors and the emotional states of facial image can be estimated by the probabilistic estimation technique, such as Bayesian classifier. Also, we extract the optimal emotional features that are considered the high correlation between feature points and emotional states by using common spatial pattern (CSP) analysis in order to improvise the operational efficiency and accuracy of emotional feature extraction process.

Optimal EEG Channel Selection using BPSO with Channel Impact Factor (Channel Impact Factor 접목한 BPSO 기반 최적의 EEG 채널 선택 기법)

  • Kim, Jun-Yeup;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.774-779
    • /
    • 2012
  • Brain-computer interface based on motor imagery is a system that transforms a subject's intention into a control signal by classifying EEG signals obtained from the imagination of movement of a subject's limbs. For the new paradigm, we do not know which positions are activated or not. A simple approach is to use as many channels as possible. The problem is that using many channels causes other problems. When applying a common spatial pattern (CSP), which is an EEG extraction method, many channels cause an overfit problem, in addition there is difficulty using this technique for medical analysis. To overcome these problems, we suggest a binary particle swarm optimization with channel impact factor in order to select channels close to the most important channels as channel selection method. This paper examines whether or not channel impact factor can improve accuracy by Support Vector Machine(SVM).

EEG Feature Classification Based on Grip Strength for BCI Applications

  • Kim, Dong-Eun;Yu, Je-Hun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.277-282
    • /
    • 2015
  • Braincomputer interface (BCI) technology is making advances in the field of humancomputer interaction (HCI). To improve the BCI technology, we study the changes in the electroencephalogram (EEG) signals for six levels of grip strength: 10%, 20%, 40%, 50%, 70%, and 80% of the maximum voluntary contraction (MVC). The measured EEG data are categorized into three classes: Weak, Medium, and Strong. Features are then extracted using power spectrum analysis and multiclass-common spatial pattern (multiclass-CSP). Feature datasets are classified using a support vector machine (SVM). The accuracy rate is higher for the Strong class than the other classes.

Real-time BCI for imagery movement and Classification for uncued EEG signal (상상 움직임에 대한 실시간 뇌전도 뇌 컴퓨터 상호작용, 큐 없는 상상 움직임에서의 뇌 신호 분류)

  • Kang, Sung-Wook;Jun, Sung-Chan
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.2083-2085
    • /
    • 2009
  • Brain Computer Interface (BCI) is a communication pathway between devices (computers) and human brain. It treats brain signals in real-time basis and discriminates some information of what human brain is doing. In this work, we develop a EEG BCI system using a feature extraction such as common spatial pattern (CSP) and a classifier using Fisher linear discriminant analysis (FLDA). Two-class EEG motor imagery movement datasets with both cued and uncued are tested to verify its feasibility.

  • PDF