• Title/Summary/Keyword: common ground

Search Result 668, Processing Time 0.039 seconds

Analysis of Effect on the Transient State According to Common Grounding between Underground Transmission Systems and Distribution Systems (지중송전 및 배전계통의 공통접지에 따른 과도상태 영향 분석)

  • Lim, Kwang-Sik;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.740-741
    • /
    • 2007
  • This paper analyses the transient state of underground distribution system against single line to ground fault in underground transmission systems, when underground transmission systems and distribution systems are made of common grounding. Underground transmission systems and distribution systems are modeled by EMTP/ATPDraw. Simulation is carried out considering variation of parameters such as value of common grounding, balance load and unbalance load.

  • PDF

Comparison of CNN and GAN-based Deep Learning Models for Ground Roll Suppression (그라운드-롤 제거를 위한 CNN과 GAN 기반 딥러닝 모델 비교 분석)

  • Sangin Cho;Sukjoon Pyun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.37-51
    • /
    • 2023
  • The ground roll is the most common coherent noise in land seismic data and has an amplitude much larger than the reflection event we usually want to obtain. Therefore, ground roll suppression is a crucial step in seismic data processing. Several techniques, such as f-k filtering and curvelet transform, have been developed to suppress the ground roll. However, the existing methods still require improvements in suppression performance and efficiency. Various studies on the suppression of ground roll in seismic data have recently been conducted using deep learning methods developed for image processing. In this paper, we introduce three models (DnCNN (De-noiseCNN), pix2pix, and CycleGAN), based on convolutional neural network (CNN) or conditional generative adversarial network (cGAN), for ground roll suppression and explain them in detail through numerical examples. Common shot gathers from the same field were divided into training and test datasets to compare the algorithms. We trained the models using the training data and evaluated their performances using the test data. When training these models with field data, ground roll removed data are required; therefore, the ground roll is suppressed by f-k filtering and used as the ground-truth data. To evaluate the performance of the deep learning models and compare the training results, we utilized quantitative indicators such as the correlation coefficient and structural similarity index measure (SSIM) based on the similarity to the ground-truth data. The DnCNN model exhibited the best performance, and we confirmed that other models could also be applied to suppress the ground roll.

Balanced Buck-Boost Switching Converter to Reduce Common-Mode Conducted Noise

  • Shoyama Masahito;Ohba Masashi;Ninomiya Tamotsu
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.212-216
    • /
    • 2001
  • Because conventional switching converters have been usually using unbalanced circuit topologies, parasitic capacitance between the drain/collector of an active switch and the frame ground through its heat sink may generate the common-mode conducted noise. We have proposed a balanced switching converter circuit, which is an effective way to reduce the common-mode conducted noise. As an example, a boost converter version of the balanced switching converter was presented and the mechanism of the common-mode noise reduction was explained using equivalent circuits. This paper extends the concept of the balanced switching converter circuit and presents a buck-boost converter version of the balanced switching converter. The feature of common-mode noise reduction is confirmed by experimental results and the mechanism of the common-mode noise reduction is explained using equivalent circuits.

  • PDF

Simplified analytical solution of tunnel cross section under oblique incident SH wave in layered ground

  • Huifang Li;Mi Zhao;Jingqi Huang;Weizhang Liao;Chao Ma
    • Earthquakes and Structures
    • /
    • v.24 no.1
    • /
    • pp.65-79
    • /
    • 2023
  • A simplified analytical solution for seismic response of tunnel cross section in horizontally layered ground subjected to oblique incidence of SH wave is deduced in this paper. The proposed analytical solution consists of two main steps: free-field response in layered field and tunnel response. The free field responses of the layered ground are obtained by one-dimensional finite element method in time domain. The tunnel lining is treated as a thick-wall cylinder to calculate the tunnel response, which subject to free field stress. The analytical solutions are verified by comparing with the dynamic numerical results of two-dimensional ground-lining interaction analysis under earthquake in some common situations, which have a good agreement. Then, the appropriate range of the proposed analytical solution is analyzed, considering the height of the layered ground, the wavelength and incident angle of SH wave. Finally, by using the analytical solutions, the effects of the ground material, burial depth of the tunnel, and lining thickness and the slippage effect at the ground-lining interface on the seismic response of tunnels are investigated. The proposed solution could serve as a useful tool for seismic analysis and design of tunnels in layered ground.

Impact of target spectra variance of selected ground motions on seismic response of structures

  • Xu, Liuyun;Zhou, Zhiguang
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.115-128
    • /
    • 2022
  • One common method to select input ground motions to predict dynamic behavior of structures subjected to seismic excitation requires spectral acceleration (Sa) match target mean response spectrum. However, dispersion of ground motions, which explicitly affects the structural response, is rarely discussed in this method. Generally, selecting ground motions matching target mean and variance has been utilized as an appropriate method to predict reliable seismic response. The goal of this paper is to investigate the impact of target spectra variance of ground motions on structural seismic response. Two sets of ground motions with different target variances (zero variance and minimum variance larger than inherent variance of the target spectrum) are selected as input to two different structures. Structural responses at different heights are compared, in terms of peak, mean and dispersion. Results show that increase of target spectra variance tends to increase peak floor acceleration, peak deformation and dispersions of response of interest remarkably. To short-period structures, dispersion increase ratios of seismic response are close to that of Sa of input ground motions at the first period. To long-period structures, dispersions of floor acceleration and floor response spectra increase more significantly at the bottom, while dispersion increase ratios of IDR and deformation are close to that of Sa of input ground motions at the first period. This study could further provide useful information on selecting appropriate ground motion to predict seismic behavior of different types of structures.

Foundation Design Practice for Highrise Buildings in Korea

  • Kim, Sungho;Hong, Seunghyeun;Choi, Yongkyu
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.4
    • /
    • pp.291-310
    • /
    • 2015
  • It is common for tall buildings in Korea to have a ground response that is highly sensitive to the behavior of the structure. Therefore, the geology of the ground needs to be carefully assessed and considered in the design process to accurately predict the performance of the foundation system. This paper sets out a systematic design approach and ground investigation methodology for the soil conditions frequently encountered in Korea. Various foundation design methods are introduced along with several case studies conducted in Korea.

Seismic characteristics of a Π-shaped 4-story RC structure with open ground floor

  • Karabini, Martha A.;Karabinis, Athanasios J.;Karayannis, Chris G.
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.345-353
    • /
    • 2022
  • The configuration of an open ground floor (pilotis) is a common and very critical irregularity observed in multistory reinforced concrete frame structures. The characteristics and the geometrical formation of the beams of the first story proved to be a critical parameter for the overall seismic behavior of this type of Reinforced Concrete (RC) structures. In this work the combination of open ground floor (pilotis) morphology with very strong perimetrical beams at the level of the first story is studied. The observation of the seismic damages and the in situ measurements of the fundamental period of four buildings with this morphology and Π-shaped plan view are presented herein. Further analytical results of a pilotis type Π-shaped RC structure are also included in the study. From the measurements and the analytical results yield that the open ground floor configuration greatly influences the fundamental period whereas this morphology in combination with strong beams can lead to severe local shear damages in the columns of the ground floor. The structural damage was limited in the columns of the ground floor and yet based on the changes of the in situ measured fundamental period the damaged level is assessed as DI=88%. Furthermore, due to the Π-shape of the plan view the tendency of the parts of the building to move independently strongly influences the distribution of the damages over the ground floor vertical elements.

Prediction of the Spawning Ground of Todarodes pacificus under IPCC Climate A1B Scenario (IPCC 기후변화 시나리오(A1B)에 따른 살오징어(Todarodes pacificus) 산란장의 변동 예측)

  • Kim, Jung-Jin;Min, Hong-Sik;Kim, Cheol-Ho;Yoon, Jin-Hee;Kim, Su-Am
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.253-264
    • /
    • 2012
  • In the northwestern Pacific, spawning of the common squid, Todarodes pacificus, occurs at continental shelf and slope areas of 100-500 m, and the optimum temperature for the spawning and survival of paralarvae is assumed to be $18-23^{\circ}C$. To predict the spawning ground of Todarodes pacificus under future climate conditions, we simulated the present and future ocean circulations, using an East Asia regional ocean model (Modular Ocean Model, MOM version3), projected by two different global climate models (MPI_echam5, MIROC_hires), under an IPCC SRES A1B emission scenario. Mean climate states for 1990-1999 and 2030-2039 from 20th and 21th Century Climate Change model simulation (from the IPCC 4th Assessment Report) were used as surface conditions for simulations, and we examined changes in spawning ground between the 1990s and 2030s. The results revealed that the distribution of spawning ground in the 2030s in both climate models shifted northward in the East China Sea and East Sea, for both autumn and winter populations, compared to that of the 1990s. Also, the spawning area (with $1/6^{\circ}{\times}1/6^{\circ}$ grid) in the 2030s of the autumn and winter populations will decline by 11.6% (MPI_echam5) to 30.8% (MIROC_hires) and 3.0% (MPI_echam5) to 18.2% (MIROC_hires), respectively, from those of the 1990s.

Low-Loss Broadband Planar Balun with CPW-to-Slotline Transition for UHF Applications

  • Hong, Young-Pyo;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.3
    • /
    • pp.146-151
    • /
    • 2009
  • This paper presents a low-loss broadband balun that uses a coplanar waveguide-to-slotline field transformation. It operates over a very wide frequency range and is of compact size since it does not depend on a resonant structure. To analyse imbalance, the coplanar wavelength(CPW) input ground is connected to the CPW output ground through various capacitors to introduce common-mode impedances. As the common-mode impedance increased the imbalance became significantly higher at the higher-frequency band compared with the lower-frequency band. The bias-circuit approach is used to improve the operation bandwidth of the lower-frequency band. The measured results show a passband of 200 MHz to 2 GHz, an insertion loss of less than 0.75 dB, and a size of $20{\times}14\;mm$. The amplitude imbalance is approximately 0.3 dB and the phase imbalance is less than $6^{\circ}$ over the entire operational range.

Cross-speaker anaphora in dynamic semantics

  • Yeom, Jae-Il
    • Language and Information
    • /
    • v.14 no.2
    • /
    • pp.103-129
    • /
    • 2010
  • In this paper, I show that anaphora across speakers shows both dynamic and static sides. To capture them all formally, I will adopt semantics based on the assumption that variables range over individual concepts that connect epistemic alternatives. As information increases, a variable can take a different range of possible individual concepts. This is captured by the notion of virtual individual (= vi), a set of individual concepts which are indistinguishable in an information state. The use of a pronoun involves two information states, one for the antecedent, which is always part of the common ground, and the other for the pronoun. Information increase changes vis for variables in the common ground. A pronoun can be used felicitously if there is a unique virtual individual in the information state for the antecedent which does not split in two or more distinctive virtual individuals in the information state for the pronoun. The felicity condition for cross-speaker anaphora can be satisfied in declaratives involving modality, interrogatives and imperatives in a rather less demanding way, because in these cases the utterance does not necessarily require non-trivial personal information for proper use of a pronoun.

  • PDF