• 제목/요약/키워드: commercial lubricants

검색결과 79건 처리시간 0.017초

원자 현미경용 콜로이드 탐침 수직 스프링 상수 측정 (Measurement of Normal Spring Constant of Colloidal Probes for Atomic Force Microscope)

  • 김대현;김민석;한준희;안효석
    • Tribology and Lubricants
    • /
    • 제28권5호
    • /
    • pp.212-217
    • /
    • 2012
  • A modified thermal noise method was proposed to measure the normal spring constants of the colloidal probes for an atomic force microscope. We used commercial tipless cantilevers (length 150, width 30, nominal k 7.4 N/m) and borosilicate spheres with a diameter of 20 to fabricate colloidal probes. The inverse optical lever sensitivity of both the tipless cantilever and colloidal probes were used to measure the normal spring constant of the colloidal probes. We confirmed the accuracy and usefulness of our method by comparing the measurement results with those obtained using the nanoforce calibrator (NFC), which reportedly has an uncertainty of 1.00%. The modified thermal method showed a good agreement (~10% difference) with the NFC, allowing us to conclude that the modified thermal method could be employed for the effective measurement of the normal spring constants of colloidal probes.

2차원 미세 포켓이 있는 무한장 Slider Bearing의 CFD 해석 (CFD Analysis of an Infinitely Long Slider Bearing with Two-Dimensional micro-Pockets)

  • 박태조;황윤건;손자덕;정호경
    • Tribology and Lubricants
    • /
    • 제25권1호
    • /
    • pp.43-48
    • /
    • 2009
  • It is reported by many researchers that the textured bearing surfaces, where many tiny micro-pockets or enclosed recesses were incorporated, can enhance the load support and reduce friction force. Recently, the basic lubrication mechanism of micro-pocketed parallel surfaces are explained in terms of "inlet suction" using continuity equation and simply cavitation condition. However, it is required that more actual cavitation condition in the pocket region should be applied to estimate exact bearing performance. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is used to investigate the exact lubrication characteristics of infinitely long slider bearing with micro-pockets. The results show that the pressure distributions are highly affected by pocket depths, its positions and numbers. The numerical method adopted in this paper and results can be use in optimal design of textured sliding bearings.

그루브의 Trap 효과에 대한 CFD 해석: 제2부 - 그루브 모서리의 곡률반경 변화 (CFD Analysis of Trap Effect of Groove in Lubricating Systems: Part II - Variation in Radius of Curvature of Groove Edge)

  • 홍성호
    • Tribology and Lubricants
    • /
    • 제36권6호
    • /
    • pp.359-364
    • /
    • 2020
  • Numerical investigation of the groove trap effect with variation in the groove-edge radius of curvature is presented here. The trap effect is evaluated in a two-dimensional sliding bearing using computational fluid dynamics (CFD). This simulation is based on the discrete phase model (DPM) and standard k - ε turbulence model using commercial CFD software, FLUENT. The numerical results are evaluated by comparisons with streamlines and particle trajectories in the grooves. Grooves are applied to various lubrication systems to improve their lubrication characteristics, such as load carrying capacity increment, leakage reduction, frictional loss reduction, and preventing three-body abrasive wear due to trapping effect. This study investigates the grove trapping effect for various groove-edge radius of curvature values and Reynolds numbers. The particle is assumed to be made of steel, with a circular shape, and is injected as a single particle in various positions. One-way coupling is used in the DPM model because the single particle injection condition is applied. Further, the "reflect" condition is applied to the wall boundary and "escape" condition is used for the "pressure inlet" and "pressure outlet" boundaries. From the numerical results, the groove edge radius is found to influence the groove trap effect. Moreover, the groove trap effect is more effective when applying the groove edge radius.

유한요소해석에 의한 코팅면의 브리넬 경도 평가: 제1보 - 타당성 연구 (Evaluation of Brinell Hardness of Coated Surface Using Finite Element Analysis: Part 1 - A Feasibility Study)

  • 박태조;강정국
    • Tribology and Lubricants
    • /
    • 제36권6호
    • /
    • pp.378-384
    • /
    • 2020
  • The friction surfaces of mechanical parts are heat-treated or coated with hard materials to minimize wear. Increasing the hardness is a very useful way to reduce abrasive wear. The general Brinell hardness test, which is widely used for metallic materials, is not suitable because it hardly shows any change in hardness when coated with thin films. In this study, we propose a basis for the application of the new Brinell hardness test method to the coated friction surface. An indentation analysis of the rigid sphere and elastic-perfectly plastic materials is performed using a commercial finite element analysis software. The results indicate that their loadto-diameter ratio is the same; the Brinell hardness test method can be applied even when the indenter diameter is on the micrometer scale. In the case of hard coating, it is difficult to calculate Brinell hardness using the diameter of the indentation, but the study revealed, for the first time, that it can be calculated using the depth of the indentation regardless of coating. The change in hardness owing to thin film coating over a wide load range implies that the hardness evaluation method is appropriate. Additional studies on various properties related to the substrate and coating material are required to apply the proposed method.

미세 그루브가 있는 무한폭 Slider 베어링의 윤활해석: 제3보 - 그루브 형상의 영향 (Lubrication Analysis of Infinite Width Slider Bearing with a Micro-Groove: Part 3 - Effect of Groove Shape)

  • 박태조;장인규
    • Tribology and Lubricants
    • /
    • 제36권4호
    • /
    • pp.193-198
    • /
    • 2020
  • Fluid film bearings are among the best devices used for overcoming friction and reducing wear. Surface texturing is a new surface treatment technique used for processing grooves and dimples on the lubricated surface, and it helps to minimize friction further and improve the wear resistance. In several studies, parallel surfaces, such as thrust bearings and mechanical face seals, have been investigated, but most sliding bearings have a convergent film shape. This paper presents the third part of a recent study and focuses on the effect of the groove shape on the lubrication performance of inclined slider bearings, following the two previous papers on the effects of the groove position and depth. We adopted the continuity and Navier - Stokes equations to conduct numerical analyses using FLUENT, which is a commercial computational fluid dynamics code. The groove shape adopted in the numerical analysis is rectangular and triangular, and its depth is varied. The results show that the streamlines, pressure distributions, and groove shape significantly influence the lubrication performance of the inclined slider bearing. For both shapes, the load-carrying capacity (LCC) is maximum near the groove depth, where vortices occur. In the shallow grooves, the LCC of the rectangular shape is higher, but in deeper grooves, that of the triangular shape is higher. The deeper the rectangular groove, the higher the decrease in the frictional force. The results of this study can be used as design data for various sliding bearings.

로우스틸 마찰재의 마찰 및 마모특성에 미치는 구리계 재료의 영향 (Effects of Copper and Copper-Alloy on Friction and Wear Characteristics of Low-Steel Friction Material)

  • 정광기;이상우;권성욱;최성우;이희옥
    • Tribology and Lubricants
    • /
    • 제36권4호
    • /
    • pp.207-214
    • /
    • 2020
  • In this study, we investigated the effects of copper and copper-alloy on the frictional and wear properties of low-steel friction material. The proportions of copper and copper-alloy in the brake friction materials used in passenger cars are very high (approximately 5-20% weight), and these materials have significant effects on friction and wear characteristics. In this study, the effects of cupric ingredients, such as the copper fiber and brass fiber, are investigated using the friction materials based on commercial formulations. After the copper and brass fibers from the same formulation were removed, the frictional and wear characteristics were evaluated to determine the influence of the copper and copper-alloy. We evaluated the frictional and wear characteristics by simulating various braking conditions using a 1/5 scale dynamometer. The results show that the friction material containing copper and brass fibers have excellent frictional stability and a low wear rate compared to the friction material that does not contain copper and brass fibers. These results are attributed to the excellent ductility, moderate melting point, high strength, and excellent thermal conductivity of copper and copper-alloy. We analyzed the surfaces of the friction materials before and after the performing the friction tests using a scanning electron microscope-energy dispersive X-ray spectroscope, confocal microscope, and roughness tester to verify the frictional behavior of copper and copper-alloy. In future studies, it will be applied to the development of copper-free friction materials based on the results of this study.

열 나노임프린트 리소그래피에서 사용되는 스탬프와 폴리머 재료 사이의 점착 특성 (Adhesion Characteristics between Stamp and Polymer Materials Used in Thermal Nanoimprint Lithography)

  • 김광섭;강지훈;김경웅
    • Tribology and Lubricants
    • /
    • 제22권4호
    • /
    • pp.182-189
    • /
    • 2006
  • In this paper, the adhesion characteristics between a fused silica without or with an anti-sticking layer and a thermoplastic polymer film used in thermal NIL were investigated experimentally in order to identify the release performance of the anti-sticking layer. The anti-sticking layers were derived from fluoroalkylsilanes, (1H, 1 H, 2H, 2H-perfluorooctyl)trichlorosilane ($F_{13}-OTS$) and (3, 3, 3-trifluoropropyl)trichlorosilane (FPTS), and coated on the silica surface in vapor phase. The commercial polymers, mr-I 7020 and 8020 (micro resist technology, GmbH), for thermal NIL were spin-coated on Si substrate with a rectangular island which was fabricated by conventional microfabrication process to achieve small contact area and easy alignment of flat contact sur- faces. Experimental conditions were similar to the process conditions of thermal NIL. When the polymer film on the island was separated from the silica surface after imprint process, the adhesion force between the silica surface and the polymer film was measured and the surfaces of the silica and the polymer film after the separation were observed. As a result, the anti-sticking layers remarkably reduced the adhesion force and the surface damage of polymer film and the chain length of silane affects the adhesion characteristics. The anti-sticking layers derived from FPTS and $F_{13}-OTS$ reduced the adhesion force per unit area to 38% and 16% of the silica sur-faces without an anti-sticking layer, respectively. The anti-sticking layer derived from $F_{13}-OTS$ was more effective to reduce the adhesion, while both of the anti-sticking layers prevented the surface damages of the polymer film. Finally, it is also found that the adhesion characteristics of mr-I 7020 and mr-I 8020 polymer films were similar with each other.

미세 그루브가 있는 무한폭 Slider 베어링의 윤활해석: 제1보 - 그루브 위치의 영향 (Lubrication Analysis of Infinite Width Slider Bearing with a Micro-Groove: Part 1 - Effect of Groove Position)

  • 박태조;장인규
    • Tribology and Lubricants
    • /
    • 제35권6호
    • /
    • pp.376-381
    • /
    • 2019
  • Surface texturing is widely applied to reduce friction and improve the reliability of machine elements. Despite extensive theoretical studies to date, most research has been limited to parallel thrust bearings, mechanical face seals, piston rings, etc. However, most sliding bearings have a convergent film shape in the sliding direction and the hydrodynamic pressure is mainly generated by the wedge action. The results of surface texturing on inclined slider bearings are largely insufficient. This paper is the first part of a recent study focusing on the effect of the groove position on the lubrication performances of inclined slider bearings. We model a slider bearing with one rectangular groove on a fixed pad and analyze the continuity and Navier-Stokes equations using a commercial computational fluid dynamics (CFD) code, FLUENT. The results show that the film convergence ratio and the groove position have a significant influence on the pressure and velocity distributions. There are groove positions to maximize the supporting load with the film convergence ratio and the groove reduces the frictional force acting on the slider. Therefore, the proper groove position not only improves the load-carrying capacity of the slider bearings but also reduces its frictional loss. The present results apply to various surface-textured sliding bearings and can lead to further studies.

미세 그루브가 있는 무한폭 Slider 베어링의 윤활해석: 제2보 - 그루브 깊이의 영향 (Lubrication Analysis of Infinite Width Slider Bearing with a Micro-Groove: Part 2 - Effect of Groove Depth)

  • 박태조;장인규
    • Tribology and Lubricants
    • /
    • 제35권6호
    • /
    • pp.382-388
    • /
    • 2019
  • It is currently well known that surface textures act as lubricant reservoirs, entrap wear debris, and hydrodynamic bearings, which can lead to certain increases in load-carrying capacities. Until recently, the vast majority of research has focused on parallel sliding machine components such as thrust bearings, mechanical face seals, piston rings, etc. However, most sliding bearings have a convergent film shape in the sliding direction and their hydrodynamic pressure is mainly generated by the wedge action. Following the first part of the present study that investigates the effect of groove position on the lubrication performances of inclined slider bearings, this paper focuses on the effects of groove depths and film thicknesses. Using a commercial computational fluid dynamics (CFD) code, FLUENT, the continuity and Navier-Stokes equations are numerically analyzed. The results show that the film thickness and groove depth have a significant influence on the pressure distribution. The maximum pressure occurs at the groove depth where the vortex is found and, as the depth increases, the pressure decreases. There is also a groove depth to maximize the supporting load with the film thickness. The friction force acting on the slider decreases with deeper grooves. Therefore, properly designed groove depths, depending on the operating conditions, can improve the load-carrying capacity of inclined slider bearings as compared to the bearings without a groove.

국내 판매되는 자동차용 엔진오일의 윤활특성 연구 (A Study on Lubrication Characteristics of Automotive Engine Oil Merchandised in Domestic)

  • 김신;강형규;임태윤;권종수;김재권;최대성;김동길;정충섭
    • Tribology and Lubricants
    • /
    • 제25권6호
    • /
    • pp.432-437
    • /
    • 2009
  • The effect of oxidation in SAE 5W30 engine oils on friction and wear characteristics was investigated using reciprocating bench tester and shell 4-ball tester. Commercial engine oils were collected and oxidized using the KS M 2021 method modifying the oxidation time. Kinematic viscosity, total acid number(TAN), FT-IR spectrum and total base number(TBN) also measured to examine the chemical change of oils with oxidation. The results showed that TAN was slightly changed and Kinematic viscosity was suddenly increased during the oxidation stage. however, TBN results keep a constant slope after TBN linearly decreased with oxidation time. Spectroscopy results showed that spectrums were orderly increased at $1710cm^{-1}$ during the oxidation time. Friction test results showed that oxidation of oils formed unstable friction layers causing higher fluctuating friction. however, the wear resistance was independent of oxidized time due to the different friction characteristics by oxidation. We found several factors in relation to lubrication properties with oxidation time. This factors were Viscosity, TBN, change of FT-IR spectrum, friction coefficient using reciprocating bench tester and wear scar.