• 제목/요약/키워드: commercial greenhouse

검색결과 209건 처리시간 0.027초

플라스틱온실의 피복방식에 따른 보온 및 광투과 성능 평가 (Estimation of Heat Insulation and Light Transmission Performance According to Covering Methods of Plastic Greenhouses)

  • 이현우;김영식;심상연;이종원;소레이멘디옵
    • 생물환경조절학회지
    • /
    • 제22권3호
    • /
    • pp.270-278
    • /
    • 2013
  • 본 연구는 우리나라 상업용 온실의 보온성능 및 광투과 성능을 개선할 수 있는 피복방식을 결정하는데 필요한 자료를 제공하기 위하여 토마토 재배용 실험온실의 세 가지 피복방식에 대한 보온효과 및 광투과 특성을 평가하였으며 결과를 요약하면 다음과 같다. 공기주입 이중피복온실과 관행 이중피복온실의 관류열손실량이 거의 비슷한 것으로 나타났으나 외부기온이 비슷할 때 피복재와 보온커튼 사이의 온도가 공기주입 이중피복온실이 더 낮게 나타난 것은 공기주입 이중피복온실의 경우 나비식 천창의 틈새로 인한 환기전열손실이 크기 때문인 것으로 판단된다. 따라서 공기주입 이중피복온실에서 나비식 천창을 사용할 경우 틈새 환기전열손실을 줄일 수 있는 대책이 수립되어야 할 것으로 판단된다. 일중피복 온실과 관행이중피복온실의 관류열전달계수에 대한 온실 실험결과와 모형실험결과를 비교한 결과 모두 비슷한 값을 나타내었다. 이러한 결과는 측정된 관류열전달계수가 타당성 있는 값임을 보여주는 것이며 향후 온실의 난방설계시 직접 활용할 수 있을 것으로 기대된다. 공기주입 이중피복온실이 비록 일중피복온실보다는 광투과율이 낮으나 동일한 이중피복온실인 관행이중피복온실보다 광투과율이 높기 때문에 보온을 위해서 이중피복을 설치할 경우에 광투과율을 확보하기 위해서는 공기주입 이중피복방식을 채택하는 것이 바람직할 것으로 판단된다. 공기주입 이중피복온실에 비해 일중피복온실의 피복재 내부표면에서 발생하는 결로량이 큰 이유는 일중피복온실의 피복재 내부표면온도가 훨씬 낮기 때문에 피복재에서의 포화습도가 작아져 내부공기의 절대습도와의 차이가 증가하기 때문인 것으로 판단된다.

기상모델을 이용한 지표면 반사능에 따른 냉방에너지 소비 저감 연구 (A Study on Reduction of Air Conditioning Energy Consumption by Surface Albedo Variation Using Meteorological Model)

  • 안재호
    • 한국태양에너지학회 논문집
    • /
    • 제30권3호
    • /
    • pp.16-24
    • /
    • 2010
  • Recently environmental regulations like the Kyoto Protocol, adopted in 1997, required the 5.2% reduction of the greenhouse gas emission in 1990. And 13th General Assembly in 2007, held in Bali of India, have agreed to duty reduction even in developing countries in 2013. Korean government needs the researches on climate change and the strategic programs for greenhouse gas reduction. In this paper Colorado State University Mesoscale Model(CSU-MM) was applied to simulate the relationship between surface albedo and air temperature. Meteorological model simulation in region of Ansan-City, Shiheung-City showed that mean air temperature became lower with the increase of albedo value. Simulated air temperature became lower $-0.16^{\circ}C$ and $-0.66^{\circ}C$ by 5% and 20% increase of albedo values respectively. And cooling energy saving amount in air conditioning process was calculated according to lowered air temperature. The reduction of air temperature resulted the reduction of air conditioning energy in personal house and commercial buildings. The increase of albedo from 5% to 20% resulted the reduction of air conditioning energy from 44,493 MWh/yr to 183,796 MWh/yr. Additionally the reduction of greenhouse gas emission through the energy saving was calculated after IPCC guideline. In terms of greenhouse gas emission $CO_2$ was reduced form -30,414 ton-$CO_2$/yr to -125,638 ton-$CO_2$/yr according to the reduction of electric energy.

자연 환기식 온실의 모델 기반 환기 제어를 위한 미기상 환경 예측 모형 (Predictive Model of Micro-Environment in a Naturally Ventilated Greenhouse for a Model-Based Control Approach)

  • 홍세운;이인복
    • 생물환경조절학회지
    • /
    • 제23권3호
    • /
    • pp.181-191
    • /
    • 2014
  • Modern commercial greenhouse requires the use of advanced climate control system to improve crop production and to reduce energy consumption. As an alternative to classical sensor-based control method, this paper introduces a model-based control method that consists of two models: the predictive model and the evaluation model. As a first step, this paper presents straightforward models to predict the effect of natural ventilation in a greenhouse according to meteorological factors, such as outdoor air temperature, soil temperature, solar radiation and mean wind speed, and structural factor, opening rate of roof ventilators. A multiple regression analysis was conducted to develop the predictive models on the basis of data obtained by computational fluid dynamics (CFD) simulations. The output of the models are air temperature drops due to ventilation at 9 sub-volumes in the greenhouse and individual volumetric ventilation rate through 6 roof ventilators, and showed a good agreement with the CFD-computed results. The resulting predictive models have an advantage of ensuring quick and reasonable predictions and thereby can be used as a part of a real-time model-based control system for a naturally ventilated greenhouse to predict the implications of alternative control operation.

농촌지역 바이오매스 에너지 보급 활성화 전략 - 시설재배 난방을 중심으로 - (Strategies for Increasing Biomass Energy Utilization in Rural Areas - Focusing on heating for greenhouse cultivation -)

  • 홍성구
    • 한국농공학회논문집
    • /
    • 제57권6호
    • /
    • pp.9-20
    • /
    • 2015
  • The demand of renewable energy is expected to grow in the long run in spite of current stable lower oil prices. Energy consumption for heating in horticulture greenhouse is large and affects the profits of the farms. This study analyzed the availability of biomass in rural area and proposed the strategies for utilizing the biomass for greenhouse heating. Data reveal the annual average fuel consumption in greenhouses is about 78 TOE/ha. Considering biomass resource in rural areas, agricultural residues are not sufficient to meet the biomass demand from greenhouses. Therefore it is recommended to secure further biomass including wild herbaceous biomass and woody biomass from forest. Based on the conditions of biomass gasification equipment investment and fuel prices, maximum allowable price of biomass turned out about 100,000 KRW/t to be competitive to kerosine. Biomass supply chain should be established for facilitating biomass trading between biomass consumers and biomass producers such as farmers who provide crop residues. An online trading system is an example of the system where consumers who utilize biomass make payments to suppliers and get the information about the biomass. Intermediate collection storages are required to store biomass from distributed sources. Operation of biomass heating systems in demonstration greenhouses is necessary to get information to refine and further develop commercial biomass heating systems. Relatively large greenhouses are desirable to have biomass heating systems for economic viability. The location of the greenhouse farms should be selected within the area where enough biomass resources are available for feeding the biomass facility.

GHG-CAPSS를 이용한 지역별, 부문별 온실가스 배출 특성 분석(2006) (Characterization of Greenhouse Gas by Emission Regions and Sectors using GHG-CAPSS(2006))

  • 이수빈;임재현;유영숙;여소영;홍유덕
    • 한국기후변화학회지
    • /
    • 제2권2호
    • /
    • pp.69-77
    • /
    • 2011
  • 최근 화석 연료와 에너지 사용의 증가에 따라 기후변화가 심화되고 대기질이 악화되고 있으나, 국내에서는 지역별 배출 부문별 온실가스 배출량을 산정하고, 배출 특성에 관한 분석 연구가 활발히 수행되고 있지 않은 실정이다. 이에 본 연구에서는 국가 및 지자체의 온실가스 감축 정책 수립 및 추진을 지원하기 위하여 온실가스 인벤토리에 관한 국제지침(IPCC Guideline)에 따라 온실가스 및 대기오염물질 통합관리시스템(GHG-CAPSS)을 구축하고, 국내 기초자치단체 단위(시 군 구)의 부문별(산업, 수송, 상업 공공, 가정, 폐기물, 농업, 기타) 온실가스 배출량을 상향식 접근론(bottom-up approach)을 적용하여 산정하였다. 2006년도를 기준으로 국내 총 온실가스 배출량($CO_2$ eq.)은 588,011천톤/년으로 산정되었으며, 이중 산업 부문이 50.1%(294,467천톤/년)로 가장 높은 배출기여율을 나타냈고, 수송 부문 17.6%(103,255천톤/년), 상업 공공 부문 12.6%(74,309천톤/년), 가정 부문 12.6%(74,209천톤/년), 폐기물 부문 2.6%(15,358천톤/년), 농업 부문 2.5%(14,516천톤/년) 순으로 나타났다. 지역별 배출량 산정 결과, 경기도 지역의 배출량이 전체의 14.9%(87,342천톤/년)를 차지하였고, 전남 12.4%(73,067천톤/년), 경북 11%(64,814천톤/년) 순으로 나타났다.

온실용 간이 자율주행 작업차의 개발 (Development of a Simple Autonomous Vehicle for Greenhouse Works)

  • 이재환;류관희
    • Journal of Biosystems Engineering
    • /
    • 제21권4호
    • /
    • pp.422-428
    • /
    • 1996
  • This study was conducted to developed to develop a simple battery-powered autonomous vehicle for greenhouse works. A steering method using speed difference of two independent driving motors was adopted. DC motor driving circuit, speed control circuit and controller using one-chip microcomputer were constructed. The inputs of controller are rolling of the vehicle and current speed of driving motors. Using these signals, automatic guidance system along furrow was developed. A computer simulation program by the kenematic analysis was developed to find out optimal control algorithm. The results of this study are as follows. 1. Automatic guidance system along the furrow that adopted two independent driving motors and rolling of vehicle was developed. 2. The results of simulation showed that PID control was adequate to automatic guidance system along furrow. 3. Two commercial 12V battery serially connected were able to drive the vehicle on the soil ground for five hours in continuous operation and for four hours in intermittent operation without recharging the battery. 4. The speed range was 0-0.7m/s and the rolling of vehicle could be controlled within $pm5^{\circ}$ range. 5. From a series of tests, developed vehicle was found to be a useful tool for greenhouse works.

  • PDF

유리 온실 시설의 연간 냉난방 부하 및 에너지 시뮬레이션에 관한 연구 (Peak Cooling and Heating Load and Energy Simulation Study for a Special Greenhouse Facility)

  • 장재철;강은철;이의준
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.72-76
    • /
    • 2009
  • A peak cooling and heating load($kW/m^2$) and annual energy($kWh/m^2{\cdot}yr$) have been simulated for a special greenhouse located near Seoul. The special facility was designed for living plant and butterfly with many visitors. The design conditions for the facility have been discussed with the designer and simulated with the weather and building conditions. The load and energy simulation was done by TRNSYS 15 based on IPMVP 4.4.2.'s simulation requirement. The results have been shown in terms of area($kW/m^2$) and volume load and energy index($kWh/m^2{\cdot}yr$). Considering the higher height of the facility, The results came out reasonably comparing the index of a typical commercial building signed as $462kWh/m^2{\cdot}yr$.

  • PDF

Biocontrol of Potato White Mold Using Coniothyrium minitans and Resistance of Potato Cultivars to Sclerotinia sclerotiorum

  • Ojaghian, Mohammad Reza
    • The Plant Pathology Journal
    • /
    • 제26권4호
    • /
    • pp.346-352
    • /
    • 2010
  • This study was conducted in Bahar and Lalehjin, Hamadan, Iran to assess the biocontrol efficacy of Coniothyrium minitans Campbell against potato white mold caused by Sclerotinia sclerotiorum (Lib.) de Bary under field and greenhouse conditions. In addition, the resistance of common potato cultivars against S. sclerotiorum was determined in a greenhouse experiment. After straw inoculation of six potato cultivars (Pashandi, Istambouli, Agria, Marfauna, Alpha and Spartaan) with S. sclerotiorum, the least disease severity was observed in Spartaan and Marfauna. Agria showed the most susceptibility to S. sclerotiorum. Compared with the healthy control, different concentrations of C. minitans conidia ($10^7$, $10^8$ and $10^9$ conidia/mL) reduced disease severity under greenhouse condition, and a concentration $10^9$ was the most effective treatment. During 2008 and 2009, four field trials were conducted to evaluate the efficacy of C. minitans in different soil and aerial applications on disease incidence of potato white mold. In 2008, soil application of $Contans^{(R)}$ WG (a commercial product of C. minitans) showed the greatest biocontrol capacity whereas soil application of solid-substrate C. minitans was found inferior when compared with other treatments in both Bahar and Lalehjin field sites. In 2009, benomyl application was the most effective treatment in reducing disease incidence in both tested field sites.

사이드스커트와 보트테일을 이용한 대형화물차량의 연비개선 효과 및 온실가스 감축량 추정 (Estimation of GHG Emissions Reduction and Fuel Economy Improvement of Heavy-Duty Trucks by Using Side Skirt and Boat Tail)

  • 허철행;윤병규;김대욱
    • 한국기후변화학회지
    • /
    • 제7권2호
    • /
    • pp.177-184
    • /
    • 2016
  • Recently, the need for technology development of commercial vehicle fuel consumption has emerged. Fuel economy improvement of transport equipment and transportation efficiency, and increasing attention to the logistics cost reduction measures. Increasing attention to the logistics cost reduction measures by fuel economy improvement of transport equipment and transportation efficiency. In this study, we have installed aerodynamic reduction device (side skirt, boat tail) to 14.5 ton cargo trucks and 45 ft tractor-trailers. And the fuel consumption was compared installed before and after. Fuel economy assessment for the aerodynamic reduction value device was tested by modifying the SAE J1321 Joint TMC/SAE Fuel Consumption Test Procedure - Type II test in according domestic situation. Greenhouse gas reductions were calculated in accordance with the scenario, including fuel consumption test results. When the 14.5 ton cargo trucks has been equipped with side skirts and boat tail, it confirmed the improvement in fuel efficiency of 4.72%. One Heavy-duty truck's the annual greenhouse gas reductions value are $6.86ton\;CO_2\;eq$. And if applying the technology to more than 50% of registered 15 ton trucks, greenhouse gas reductions are calculated as $686,826ton\;CO_2\;eq./yr$.

국가 에너지통계에 따른 건물부문 온실가스 배출량 추계 및 특성 (Estimation and Feature of Greenhouse Gas Emission in Building Sector by National Energy Statistic)

  • 정영선;김태형
    • 대한건축학회논문집:구조계
    • /
    • 제35권7호
    • /
    • pp.187-195
    • /
    • 2019
  • In December 2015, The Paris Agreement was adopted to undertake ambitious efforts to combat climate change. Korean government announced its goal of reducing the country's greenhouse gas emissions by up to 37% below business as usual projections by 2030 in 2015. The purpose of this study was to set up the calculation methodology of GHG emission($CO_{2e}$) in building sector and to estimate the annual GHG emission in building sector based on national energy consumption statistic. The GHG emission from buildings is about 135.8 million ton $CO_{2e}$ as of 2015, taking up about 19.6% of Korea's entire emission and is about 144.7 million ton $CO_{2e}$ in 2017. The GHG emission of building sector is increasing at annual rate of 2.0% from 2001 to 2017. The GHG emission from electricity consumption in buildings is 91.8 million ton $CO_{2e}$ in 2017, is the highest $CO_2$ emission by energy source. The results show that the intensity of GHG emission of residential building sector is $40.6kg-CO_{2e}/m^2{\cdot}yr$ and that of commercial building sector is $68.4kg-CO_{2e}/m^2{\cdot}yr$.