• Title/Summary/Keyword: commercial concrete

Search Result 304, Processing Time 0.022 seconds

Analysis methodology of local damage to dry storage facility structure subjected to aircraft engine crash

  • Almomani, Belal;Kim, Tae-Yong;Chang, Yoon-Suk
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1394-1405
    • /
    • 2022
  • The importance of ensuring the inherent safety and security has been more emphasized in recent years to demonstrate the integrity of nuclear facilities under external human-induced events (e.g. aircraft crashes). This work suggests a simulation methodology to effectively evaluate the impact of a commercial aircraft engine onto a dry storage facility. A full-scale engine model was developed and verified by Riera force-time history analysis. A reinforced concrete (RC) structure of a dry storage facility was also developed and material behavior of concrete was incorporated using three constitutive models namely: Continuous Surface Cap, Winfrith, and Karagozian & Case for comparison. Strain-based erosion limits for concrete were suitably defined and the local responses were then compared and analyzed with empirical formulas according to variations in impact velocity. The proposed methodology reasonably predicted such local damage modes of RC structure from the engine missile, and the analysis results agreed well with the calculations of empirical formulas. This research is expected to be helpful in reviewing the dry storage facility design and in the probabilistic risk assessment considering diverse impact scenarios.

Effects of activated carbon on the compressive strength of Portland cement concrete

  • Sungmin Youn;Andrew Ball;Claire Fulks;Sanghoon Lee;Sukjoon Na
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.19-27
    • /
    • 2023
  • A series of experiments were performed to evaluate the effects of activated carbon on the compressive strength and air content of Portland Cement Concrete (PCC). Activated carbon/PCC composites were prepared by mixing concrete components with commercial activated carbon granules with weight fractions of 0, 0.5%, 1%, and 2% to cement. All PCC specimens were then tested for compressive strength on 7, 14, 21, and 28 days. The experimental results showed that adding 0.5% of activated carbon increased the compressive strength significantly over the curing periods compared to the normal PCC without activated carbon. For the specimens has 0.5% activated carbon, the 7, 14, 21, and 28-day compressive strengths increased by 28.7%, 22.2%, 26.8%, and 22.9%, respectively. However, adding excessive amounts of more than 1% activated carbon had a minimal effect on the compressive strength or even decreased it, which agrees with other studies. Regarding the air contents of the mixtures, adding activated carbon decreased the air content from 3.6% to around 1.5%. The surface morphologies of fine aggregates and activated carbon particles were compared using a novel image processing technique. The results indicated that the surface of activated carbon significantly differs from that of aggregates.

Experimental analysis of blast loading effects on security check-post

  • Muhammed Rizvan Akram;Ali Yesilyurt
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.273-282
    • /
    • 2023
  • Concrete construction, one of the oldest building practices, is commonly used in all parts of the world. Concrete is the primary building material for both residential and commercial constructions. The challenge of protecting the buildings, hence nation, against the attack of terrorism has raised the importance to explore the understanding of building materials against the explosion. In this research, a security check-post (reinforced concrete frame filled with plain cement concrete) has been chosen to study the behavior of structural elements under blast loading. Eight nitroglycerines-based dynamite blasts with varying amounts of explosive charge, up to 17 kg weight has been carried out at various scale distances. Pressure and acceleration time history records are measured using blast measuring instruments. Security check post after being exposed by explosive loading are photographed to view cracking/failure patterns on the structural elements. It is noted that with the increase of quantity of explosive, the dimensions of spalling and crack patterns increase on the front panels. Simple empirical analyses are conducted using ConWep and other design manuals such as UFC 3-340-02 (2008) and AASTP-1 (2010) for the purpose of comparison of blast parameters with the experimental records. The results of experimental workings are also compared with earlier researchers to check the compatibility of developed equations. It is believed that the current study presents the simple and preliminary procedure for calculating the air blast and ground shock parameters on the structures exposed to blast explosion.

A Proposal of Simplified Bond Stress-Slip Model between FRP Plank and Cast-In-Place Concrete (FRP 판과 현장타설 콘크리트 사이의 단순 부착모델 제안)

  • Yoo, Seung-Woon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.65-72
    • /
    • 2008
  • The use of hybrid FRP-concrete structures with a dual purpose of both permanent formwork and reinforcement, has been considered in some studies recently. For the FRP plank and the concrete to act as a composite structural member a satisfactory bond at the interface between the smooth surface of the pultruded plank and the cast-in-place concrete must be developed. Sand was bonded to the pultruded FRP plank using a commercially available epoxy system. In applying general analysis techniques to evaluate the performance of composite structures with FRP stay-in-place forming, it is essential that characteristics of the bond stress-slip relation be identified. In this study I would like to propose a simplified bilinear bond stress-slip model for FRP composite structures.

Optimized Mixing Design of Lightweight Aerated Concrete by Response Surface Analysis (반응표면분석법에 따른 경량기포콘크리트 최적배합 도출에 관한 연구)

  • Lee, Sang-An;Jung, Chan-Woo;Kim, Wha-Jung;Ahn, Jung-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.745-752
    • /
    • 2009
  • This paper presents the optimized mixing design of lightweight aerated concrete using hydrogen peroxide. Design of experiments in order to the optimized mixing design was applied and commercial program (MINITAB) was used. Statistical analysis was used to Box-Behnken (B-B) method in response surface analysis. The influencing factors of experimental are unit cement content, water ratio and hydrogen peroxide ratio. According to the analysis of variance, at the hardened state, water ratio and hydrogen peroxide ratio affects on dried density, compressive strength and bending strength of lightweight aerated concrete, but unit cement content affects on only dried density. In the results of response surface analysis, to obtain goal performance, the optimized mixing design for lightweight aerated concrete using hydrogen peroxide were unit cement content of 800 kg/$m^3$, water ratio of 44.33% and hydrogen peroxide ratio of 10%.

Bond slip modelling and its effect on numerical analysis of blast-induced responses of RC columns

  • Shi, Yanchao;Li, Zhong-Xian;Hao, Hong
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.251-267
    • /
    • 2009
  • Reinforced concrete (RC) structures consist of two different materials: concrete and steel bar. The stress transfer behaviour between the two materials through bond plays an important role in the load-carrying capacity of RC structures, especially when they subject to lateral load such as blast and seismic load. Therefore, bond and slip between concrete and reinforcement bar will affect the response of RC structures under such loads. However, in most numerical analyses of blast-induced structural responses, the perfect bond between concrete and steel bar is often assumed. The main reason is that it is very difficult to model bond slip in the commercial finite element software, especially in hydrodynamic codes. In the present study, a one-dimensional slide line contact model in LS-DYNA for modeling sliding of rebar along a string of concrete nodes is creatively used to model the bond slip between concrete and steel bars in RC structures. In order to model the bond slip accurately, a new approach to define the parameters of the one-dimensional slide line model from common pullout test data is proposed. Reliability and accuracy of the proposed approach and the one-dimensional slide line in modelling the bond slip between concrete and steel bar are demonstrated through comparison of numerical results and experimental data. A case study is then carried out to investigate the bond slip effect on numerical analysis of blast-induced responses of a RC column. Parametric studies are also conducted to investigate the effect of bond shear modulus, maximum elastic slip strain, and damage curve exponential coefficient on blast-induced response of RC columns. Finally, recommendations are given for modelling the bond slip in numerical analysis of blast-induced responses of RC columns.

A state of review on manufacturing and effectiveness of ultra-high-performance fiber reinforced concrete for long-term integrity of concrete structures

  • Dongmei Chen;Yueshun Chen;Lu Ma;Md. Habibur Rahman Sobuz;Md. Kawsarul Islam Kabbo;Md. Munir Hayet Khan
    • Advances in concrete construction
    • /
    • v.17 no.5
    • /
    • pp.293-310
    • /
    • 2024
  • Ultra-high-performance fiber-reinforced concrete (UHPFRC) is a form of cement-based material that has a compressive strength above 150 MPa, excellent ductility, and superior durability. This composite material demonstrates innovation and has the potential to serve as a viable substitute for concrete constructions that are subjected to harsh environmental conditions. Over many decades, extensive research and progressive efforts have introduced several commercial UHPFRC compositions globally. These compositions have been specifically designed to cater to an increasing variety of applications and meet the rising need for building materials of superior quality. However, the effective manufacturing of UHPFRC relies on the composition of its materials, especially the inclusion of fiber content and the proportions in the mixture, resulting in a more compact and comparatively uniform packing of particles. UHPFRC has notable benefits in comparison to conventional concrete, yet its use is constrained by the dearth of design codes and the prohibitive expenses associated with its implementation. The study demonstrates that UHPFRC presents a viable, long-lasting option for improving sustainable construction. This is attributed to its outstanding strength properties and superior durability in resisting water and chloride ion permeability, freeze-thaw cycles, and carbonation. The analysis found that a rheology-based mixture design technique may be employed in the production of UHPFRC to provide enough flowability. The study also revealed that the use of deformed steel fibers has shown enhanced mechanical qualities in comparison to straight steel fibers. However, obstacles such as higher initial costs, the requirement for highly specialized personnel, and the absence of comprehensive literature on global UHPFRC standards that establish minimum strength criteria and testing requirements can hinder the widespread implication of UHPFRC. Finally, this review attempts to deepen our foundational conception of UHPFRC, encourages additional study and applications, and recommends an in-depth investigation of the mechanical and durability properties of UHPFRC to maximize its practicality.

A Study on Social Responsibility's Legal Aspects and Its Expectation Effectiveness of Chinese Large Commercial Banks (중국 대형상업은행 사회적 책임의 법률적 측면 및 기대효과에 관한 연구)

  • Roh, Eun-Young;Kim, Ju-Won;Kim, Yong-June
    • International Area Studies Review
    • /
    • v.18 no.3
    • /
    • pp.147-173
    • /
    • 2014
  • The economic growth of China, an average of 9% as an external performance, has caused lots of side effects in the country. The social issues such as income gap, especially the wide gap between the rich and poor, and regional divide are the main cause of concerns that China's economic growth is not sustainable. It prompted the Chinese government to realize that institutional regulations on CSR are not optional but required to promote the sustainable development of corporations. In 2006, CSR was addressed for the first time in China, as the government established the November 5 Plan and revised "Company Law". The government garnered social attention by introducing CSR for the first time in November 5 Plan. Also, the government established December 5 Plan in 2011 to set a key goal as 'sustainable development' and reflect concrete measures for CSR in its corporate policy. In particular, Commercial Bank has a social responsibility to establish more concrete, forceful regulations than those of general corporations, as a financial intermediary. Thus, this study is aimed at exploring how the social responsibility of Commercial Bank is reflected in the Banking Act, the issues, and legislative directions on the social responsibility of Commercial Bank in China.

An experimental study of the behaviour of double sided welded plate connections in precast concrete frames

  • Gorgun, Halil
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.1-22
    • /
    • 2018
  • Multi-storey precast concrete skeletal structures are assembled from individual prefabricated components which are erected on-site using various types of connections. In the current design of these structures, beam-to-column connections are assumed to be pin jointed. Welded plate beam to-column connections have been used in the precast concrete industry for many years. They have many advantages over other jointing methods in component production, quality control, transportation and assembly. However, there is at present limited information concerning their detailed structural behaviour under bending and shear loadings. The experimental work has involved the determination of moment-rotation relationships for semi-rigid precast concrete connections in full scale connection tests. The study reported in this paper was undertaken to clarify the behaviour of such connections under symmetrical vertical loadings. A series of full-scale tests was performed on sample column for which the column geometry and weld arrangements conformed with successful commercial practice. Proprietary hollow core slabs were tied to the beams by tensile reinforcing bars, which also provide the in-plane continuity across the connections. The strength of the connections in the double sided tests was at least 0.84 times the predicted moment of resistance of the composite beam and slab. The secant stiffness of the connections ranged from 0.7 to 3.9 times the flexural stiffness of the attached beam. When the connections were tested without the floor slabs and tie steel, the reduced strength and stiffness were approximately a third and half respectively. This remarkable contribution of the floor strength and stiffness to the flexural capacity of the joint is currently neglected in the design process for precast concrete frames. In general, the double sided connections were found to be more suited to a semi-rigid design approach than the single sided ones. The behaviour of double sided welded plate connection test results are presented in this paper. The behaviour of single sided welded plate connection test results is the subject of another paper.

Influence of structural system measures on the dynamic characteristics of a multi-span cable-stayed bridge

  • Geng, Fangfang;Ding, Youliang;Xie, Hongen;Song, Jianyong;Li, Wanheng
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.51-73
    • /
    • 2014
  • A three-dimensional finite element model for the Jiashao Bridge, the longest multi-span cable-stayed bridge in the world, is established using the commercial software package ANSYS. Dynamic characteristics of the bridge are analyzed and the effects of structural system measures including the rigid hinge, auxiliary piers and longitudinal constraints between the girders and side towers on the dynamic properties including modal frequency, mode shape and effective mass are studied by referring to the Jiashao Bridge. The analysis results reveal that: (i) the installation of the rigid hinge significantly reduces the modal frequency of the first symmetric lateral bending mode of bridge deck. Moreover, the rigid hinge significantly changes the mode shape and effective mass of the first symmetric torsional mode of bridge deck; (ii) the layout of the auxiliary piers in the side-spans has a limited effect on changing the modal frequencies, mode shapes and effective masses of global vibration modes; (iii) the employment of the longitudinal constraints significantly increases the modal frequencies of the vertical bending modes and lateral bending modes of bridge deck and have significant effects on changing the mode shapes of vertical bending modes and lateral bending modes of bridge deck. Moreover, the effective mass of the first anti-symmetric vertical bending of bridge deck in the longitudinal direction of the fully floating system is significantly larger than that of the partially constrained system and fully constrained system. The results obtained indicate that the structural system measures of the multi-span cable-stayed bridge have a great effect on the dynamic properties, which deserves special attention for seismic design and wind-resistant design of the multi-span cable-stayed bridge.