• 제목/요약/키워드: comfort sensation

검색결과 257건 처리시간 0.024초

하계 인공환경실험에서의 온열쾌적특성 (Characteristics of thermal comfort for artificial environment experiment in summer)

  • 박종일;김경훈;홍희기;민병일;김창주
    • 설비공학논문집
    • /
    • 제10권3호
    • /
    • pp.368-377
    • /
    • 1998
  • The purpose of this study was to examine theory about indoor thermal comfort-environment as well as to determine thermal sensation and physiological responses for men in summer indoor environment, under various air temperature and relative humidity, with male university students. Subjective Evaluation, Heart Rate(Electrocardiogram), Electroencephalogram(EEG) were examined. We found that comfort of people was achieved at SE $T^{*}$ 24.7$^{\circ}C$, -0.82<PMV<0.93, subject's clothing(0.41c1o)and the difference of skin temperature was found at the calf area as air temperature changes. At low SE $T^{*}$, heart rate was decreased and at high SE $T^{*}$, heart rate was increased but there was no change EEG(keeping $\alpha$-wave).wave).

  • PDF

고감성 인조피혁개발을 위한 제품중심 공정설계 시스템 (A Product-Focused Process Design System(PFPDS) for High Comforts Artificial Leather Fabrics)

  • 김주용;박백성;이채정
    • 한국염색가공학회지
    • /
    • 제20권6호
    • /
    • pp.69-74
    • /
    • 2008
  • In this paper, a comfort evaluation system based on a product-focused process design (PFPD) has been proposed for high comforts interior seat covers. Correlations between comforts properties and physical/thermal properties of interior seat covers were examined by combining traditional regression analysis and data mining techniques. A skin sensorial comfort of leather samples was evaluated by only human tactile sensation. The adjectives of leather car seat covers are 'Soft', 'Sticky' and 'Elastic'. Thermo-physiological comfort properties of leather samples were evaluated by only human tactile sensation. The adjectives of leather car seat covers are 'Coolness to the touch' and 'Thermal and humid'. Skin sensorial comforts of cloth samples were evaluated by only human tactile sensation. The adjectives of cloth car seat covers are 'Soft', 'Smooth', 'Voluminous' and 'Elastic'. Thermo-physiological comforts of cloth samples were evaluated by only human tactile sensation. The adjectives of cloth car seat covers are 'Coolness to the touch' and 'Thermal and humid'.

Characteristics of Thermal Comfort in Environment Chamber for Winter

  • Kim, Kyung-Hoon;Park, Jong-Il;Song, Yong-Gil
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제8권1호
    • /
    • pp.73-83
    • /
    • 2000
  • The purpose of this study is to analyze and characterize the correlation of the thermal comfort sensation with physiological responses for men in winter indoor environment. A number of experiments were conducted under twenty different environmental conditions with college male students. Clinical information on each participant was reported in terms of electrocardiogram (ECG), electroencephalogram (EEG) and self-centered evaluation. The comfort zone in winter is found, throughout the study, at Standard New Effective Temperature (SET$T^+$) of 25.2$^{\circ}C$, Predicted Mean Vote (PMV) between 0.27 and 0.62, and Thermal Sensation Vote (TSV) in the range of -0.76 and 0.36. The largest difference in skin temperature is measured at the calf area with respect to air temperature changes. Skin sensitivity to environment temperature is explained as calf, head, chest and abdomen in descending order. Change in heat rate is analyzed to be in parallel with that of SET$T^+$.

  • PDF

겨울철 사무실내 온열환경 특성 및 쾌적성 평가 (Characteristics of Thermal Environments and Evaluation of Thermal Comfort in Office Building in Winter)

  • 배귀남;이철희;이춘식;최항철
    • 설비공학논문집
    • /
    • 제7권2호
    • /
    • pp.310-318
    • /
    • 1995
  • In this study, indoor thermal parameters were measured to investigate the characteristics of thermal environments and 138 occupants were questioned to evaluate Korean thermal comfort in office building in winter. Thermal sensation was estimated by using PMV(Predicted Mean Vote) and ET*(New Effective Temperature) indices. Comparing present experimental result with international standards and that of other research, Korean thermal responses were discussed. Seasonal difference between summer and winter was also discussed. It was found that TSV(Thermal Sensation Vote) is more sensitive than PMV to the variation of temperature and that the measured percentage of dissatisfied is higher than PPD(Predicted Percentage of Dissatisfied) in real office building environments. By regression analysis, the following regression equation has been obtained; TSV=0.432ET*-8.814 and neutral temperature is $20.4^{\circ}C$ in this case. Thermal comfort range based on 80% satisfaction is also $19.4{\sim}22.4^{\circ}C$.

  • PDF

동계 인공환경실험에 의한 온열쾌적특성 연구 (A study on characteristics of thermal comfort for artificial environmental experiment in winter)

  • 박종일;김경훈;정성일
    • 설비공학논문집
    • /
    • 제10권6호
    • /
    • pp.721-731
    • /
    • 1998
  • Recently, many researchers are studying the relation between thermal environment and human comfort. The purpose of this study was to obtain basic data which are necessary to determine the thermal comfort sensation and physiological responses for men in winter indoor environment. From January to February 1998, subject experiment was 40 times proceeded under twenty different conditions of air temperature and relative humidity with early-twenty male university students. We examined subjective evaluation, Electrocardiogram(ECG), Electroencephalogram(EEG) of subjects. The results of this study can be summarized as follows : The comfort zone of people in winter was achieved at Standard new effective temperature($SET^*$) $ 25.2^{\circ}C$, PMV range was obtained by Fanger's statistical calculation was -0.27<PMV<+0.62, TSV range obtained subjects vote was -0.76<TSV<+0.36. The largest difference of skin temperature was found at the calf area as air temperature changes. vote rate of human body presented calflongrightarrowheadlongrightarrowforearmlongrightarrowchestlongrightarrowabdo men in turn. Heart rate was decreased at low $SET^*$ and heart rate was increased at high $SET^*$ But there was no change at EEG.

  • PDF

보행보조 재활 로봇 착용에 따른 쾌적성 평가 (Comfort Evaluation by Wearing a Gait-Assistive Rehabilitation Robot)

  • 엄란이;이예진
    • 한국의류학회지
    • /
    • 제44권6호
    • /
    • pp.1107-1119
    • /
    • 2020
  • This study analyzed a subject's body reaction and subjective sensation when wearing a gait-assistive rehabilitation robot. The research method measured skin and clothing surface temperatures for 'seating-standing' and 'walking in place' exercises after wearing a gait-assistive rehabilitation robot. In addition, subjective sensation and satisfaction were evaluated on a 7-point Likert scale. The study results showed that the average skin temperature during exercise while wearing the gait-assistive rehabilitation robot was within a comfortable range. However, during the 'seating-standing' exercise, the skin temperature was slightly lowered. Additionally, the clothing surface temperature tended to be lower than the pre-exercise temperature after all exercises. The subjective sensation evaluation results showed that the wear comfort of the waist part was low during mobility/activity. In addition, an overall improvement in the wear comfort of the robot is necessary. The short-time movement of wearing and walking in the gait-assistive rehabilitation robot did not interfere with the thermal comfort of the body. However, the robot needs to be ergonomically improved in consideration of the long wearing time along with improved material that to satisfy overall wearing comfort.

2종류의 양말착의행동이 인체생리반응에 미치는 효과 (Effects of Two Kifferent Kinds of Socks on Physiologrical Responses)

  • 김희은;권오경
    • 한국의류학회지
    • /
    • 제23권2호
    • /
    • pp.242-249
    • /
    • 1999
  • The purpose of this study was to investigate two different kinds of socks on physiological responses at an ambient temperature of 35$\pm$1$^{\circ}C$ and relative humidity of 50$\pm$5% Five healthy women wearing normal socks or toes socks participated as the subjects. Rectal temperature skin temperatures sweat rate blood pressure pulse rate and questionnaire wee measured. Rectal temperature skin temperature sweat rate blood pressure pulse rate and questionnaire were measured. Rectal temperature and mean skin temperature were lower after exercise at wearing toes socks . Sweat rate was higher at wearing normal socks and blood pressure and pulse rate were tend to higher at wearing toes socks. Thermal comfort temperature sensation and humidity sensation were better wearing toes socks. Thermal comfort temperature sensation and humidity sensation were better wearing toes socks than wearing normal socks but wearing comfort was better at wearing normal socks. These results will be discussed form the viewpoint of thermoregulation AVA(Arterio venous Anastomosis) and count current heat exchange.

  • PDF

스포츠양말 소재의 물성 및 운동시 양말의 착용감 분석 (Physical Properties of Sports Material and Wear Trial Test of Sports Socks During Exercise)

  • 김칠순;이훈자;박명자
    • 한국의류학회지
    • /
    • 제24권8호
    • /
    • pp.1115-1124
    • /
    • 2000
  • The purpose of this study was 1) to determine physical properties, and subjective evaluation of sensation of sports socks with various type of fiber content and fabric structure, and 2) to develop regression equations for predicting each sensation from physical properties of socks. Thirty healthy male students participated in the wear test with ten replications. The ANOVA, Duncans multiple test, and multiple regression, and paired-t test were used in the statistical analysis, using an SAS package. The results of this study are as follows: 1. 100% cotton socks had higher absorbency and wickability among five different socks. Comfort sensation, tactile sensation and fit sensation of socks were significantly influenced by types of fiber content. People felt that polypropylene socks were less comfortable & slightly tighter, and cotton socks were drier than the other socks. Terry socks were warmer than single jersey socks. 2. The results of the regression analysis showed that tactile sensation of socks after exercise can be predicted from the cube of moisture permeability($R^2$=0.99), and fit sensation can be predicted from drop absorbency, moisture permeability, wickability in wale and weight($R^2$=-0.98).

  • PDF

Indoor Neutral Temperature Range using Temperature and Humidity Perception Assessment

  • Yang, Wonyoung
    • KIEAE Journal
    • /
    • 제16권5호
    • /
    • pp.29-37
    • /
    • 2016
  • Purpose: Indoor thermal comfort can be identified by combination of temperature, humidity, and air flow, etc. However, most thermal indexes in regard to thermal comfort are temperature dominant since it has been considered as a significant factor affecting to indoor thermal comfort The purposes of this study are to investigate indoor neutral temperature range of young Koreans with humidity perception, and to introduce a neutral temperature for temperature preference as well as temperature sensation in order to define the neutral temperature range chosen by occupants. It could be used as basic data for heating and cooling. Method: 26 research participants volunteered in 7 thermal conditions ($18^{\circ}C$ RH 30%, $18^{\circ}C$ RH 60%, $24^{\circ}C$ RH 30%, $24^{\circ}C$ RH 40%, $24^{\circ}C$ RH 60%, $30^{\circ}C$ RH 30%, $30^{\circ}C$ RH 60%) and completed subjective assessment in regard to temperature/humidity sensation and preference twice per condition in an indoor environmental chamber. Result: In RH 30%, sensation neutral temperature was $25.1^{\circ}C$ for men and $27.0^{\circ}C$ for women, and preference neutral temperature was $25.5^{\circ}C$ for men and $27.8^{\circ}C$ for women. In RH 60%, sensation neutral temperature was $23.6^{\circ}C$ for men and $25.9^{\circ}C$ for women, and preference neutral temperature was $23.4^{\circ}C$ for men and $26.3^{\circ}C$ for women. Neutral temperature increased with increasing relative humidity. Women were sensitive to humidity changes. Men expressed humidity changes as temperature variations. In most conditions, preference neutral temperatures were higher than sensation neutral temperatures, however, the preference neutral temperature for men in humid condition was lower than the sensation neutral temperature.

여름철 사무실내 온열환경 특성 및 쾌적성 평가 (Characteristics of Thermal Environments and Evaluation of Thermal Comfort in Office Building in Summer)

  • 이철희;배귀남;최항철;이춘식
    • 설비공학논문집
    • /
    • 제6권3호
    • /
    • pp.206-217
    • /
    • 1994
  • In this study, indoor thermal parameters were measured to investigate the characteristics of thermal environments and 212 occupants were questioned to evaluate Korean thermal comfort in office building in summer. Thermal and comfort sensations were estimated using PMV(Predicted Mean Vote) and ET* (New Effective Temperature) which are most widely used nowadays. Comparing this experimental result with international standards and that of other research, Korean thermal responses were discussed. It was found that TSV(Thermal Sensation Vote) is more sensitive than PMV to the variation of temperature and that the measured percentage of dissatisfied is higher than PPD(Predicted Percentage of Dissatisfied) in real office building environments. By regression analysis, the following regression equation has been obtained: TSV=0.461ET*-11.808 and neutral temperature is $25.6^{\circ}C$ in this case. Thermal comfort range based on 80% satisfaction is also $24.0{\sim}26.8^{\circ}C$, which is about $1^{\circ}C$ higher than that of ANSI/ASHRAE Standard.

  • PDF