• 제목/요약/키워드: combustion velocity

검색결과 894건 처리시간 0.026초

저신장율 대향류확산화염에서 소화하는 화염디스크로부터 화염구멍으로 천이에 관한 연구 (A Study on Transition of Shrinking Flame Disk to Flame Hole at Low Strain Rate Counterflow Diffusion Flames)

  • 박대근;박정;윤진한;길상인
    • 한국연소학회지
    • /
    • 제13권4호
    • /
    • pp.16-25
    • /
    • 2008
  • Experiments have been conducted to clarify impacts of curtain flow and velocity ratio on low strain rate flame extinction, and to further display transition of shrinking flame disk to flame-hole. Critical mole fractions at flame extinction are examined in terms of velocity ratio, global strain rate, and nitrogen curtain flow rate. It is shown that multi-dimensional effects at low strain rate flames through global strain rate, velocity ratio, and curtain flowrate dominantly contribute to flame extinction and transition of shrinking flame disk to flame hole. Our concerns are particularly focused on the dynamic behavior of an edge flame in shrinking flame disk.

  • PDF

제한공간에서 비예혼합 난류제트 화염의 부상특성 (Characteristics of Lifted Flames in Nonpremixed Turbulent Confined Jets)

  • 차민석;정석호
    • 한국연소학회지
    • /
    • 제1권1호
    • /
    • pp.41-49
    • /
    • 1996
  • Effects of ambient geometry on the liftoff characteristics are experimentally studied for nonpremixed turbulent jet flames. To clarify the inconsistency of the nozzle diameter effect on the liftoff height, the ambiences of finite and infinite domains are studied. For nonpremixed turbulent jet issuing from a straight nozzle to infinite domain, flame liftoff height increases linearly with nozzle exit mean velocity and is independent of nozzle diameter. With the circular plate installed on the upstream of nozzle exit, flame liftoff height is lower with plate at jet exit than without, but flame liftoff characteristics are similar to the case of infinite domain. For the confined jet having axisymmetric wall boundary, the ratio of the liftoff height and nozzle diameter is proportional to the nozzle exit mean velocity demonstrating the effect of the nozzle diameter on the liftoff height. The liftoff height increases with decreasing outer axisymmetric wall diameter. At blowout conditions, the blowout velocity decreases with decreasing outer axisymmetric wall diameter and liftoff heights at blowout are approximately 50 times of nozzle diameter.

  • PDF

Experimental Study on Comparison of Flame Propagation Velocity for the Performance Improvement of Natural Gas Engine

  • Chung Jin Do;Jeong Dong Soo
    • 한국환경과학회지
    • /
    • 제14권1호
    • /
    • pp.15-22
    • /
    • 2005
  • Natural gas possesses several characteristics that make it desirable as an engine fuel; 1)lower production cost, 2)abundant commodity and 3)cleaner energy source than gasoline. Due to the physics characteristics of natural gas, the volumetric efficiency and flame speed of a natural gas engine are lower than those of a gasoline engine, which results in a power loss of $10-20{\%}$ when compared to a normal gasoline engine. This paper describes the results of a research to improve the performance of a natural gas engine through the modification and controls of compression ratio, air/fuel ratio, spark advance and supercharging and method of measuring flame propagation velocity. It emphasizes how to improve the power characteristics of a natural gas engine. Combustion characteristics are also studied using an ion probe. The ion probe is applied to measure flame speed of gasoline and methane fuels to confirm the performance improvement of natural gas engine combustion characteristics.

급 확대부를 갖는 실린더 챔버 내부 유동에 관한 LES 난류모델의 평가 (Evaluation of turbulent SGS model for large eddy simulation of turbulent flow inside a sudden expansion cylindrical chamber)

  • 최창용;고상철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.423-433
    • /
    • 2004
  • A large eddy simulation (LES) is performed for turbulent flow in a combustion device. The combustion device is simplified as a cylindrical chamber with sudden expansion. A flame holder is attached inside a cylindrical chamber in order to promote turbulent mixing and to accommodate flame stability. The turbulent sub-grid scale models are applied and validated. Emphasis is placed on the evaluation of turbulent model for the LES of complex geometry. The simulation code is constructed by using a general coordinate system based on the physical contravariant velocity components. The calculated Reynolds number is 5000 based on the bulk velocity and the diameter of inlet pipe. The predicted turbulent statistics are evaluated by comparing with the LDV measurement data. The Smagorinsky model coefficients are estimated and the utility of dynamic SGS models are confirmed in the LES of complex geometry.

산소부화공기가 동축 비예혼합 제트의 연소특성에 미치는 영향 (I) - 화염의 부상과 안정성 (Effect of Oxygen Enriched Air on the Combustion Characteristics in a Coaxial Non-Premixed Jet ( I ) - Lift-off and Flame Stability -)

  • 곽지현;전충환;장영준
    • 대한기계학회논문집B
    • /
    • 제28권2호
    • /
    • pp.160-166
    • /
    • 2004
  • Combustion using oxygen enriched air is known as a technology which can increase flame stability as well as thermal efficiency due to improving the burning rate. Lift-off, blowout limit and flame length were examined as a function of jet velocity, coflow velocity and OEC(Oxygen Enriched Concentration). Blowout limit of the flame below OEC 25% decreased with increase of coflow velocity, but the limit above OEC 25% increased inversely. Lift-off height decreased with increase of OEC. In particular, lift-off hardly occurred in the condition above OEC 40%. Flame length of the flames above OEC 40% was increased until the blowout occurred. Great flame stability was obtained since lift-off and blowout limit significantly increased with increase of OEC.

메틸알콜의 화염전파속도에 관한 연구 (A Study on the Flame Propagation Velocity of Methyl Alcohol)

  • 최재욱
    • 한국화재소방학회논문지
    • /
    • 제19권3호
    • /
    • pp.44-51
    • /
    • 2005
  • 도료공업, 유기합성의 원료, 혼합용제 및 분석용 시약으로 광범위하게 이용되고 있는 메틸알콜에 대하여 작업장에서 발생할 우려가 있는 화재 폭발 예방 대책을 수립하기 위한 기초자료를 획득하기 위하여 화염전파속도와 화염도달시간을 측정하였다 용기의 크기를 변화시키고 온도 및 농도를 변화시켜 실험을 행한 결과 시료의 용기가 적을수록 연소가 용이하고 연소속도는 빠르게 나타났으며, 최대연소속도는 소용기 $30^{\circ}C$에서 200 cm/sec를 구하였다. 화염도달시간은 시료 용기의 크기가 클수록 길어지는 경향을 나타내었으며, 시료의 온도 및 농도가 높아질수록 짧아졌다.

축대칭 층류부상화염에서 재부착현상에 관한 연구 (Study on Reattachment in Axisymmetric Laminar Lifted Flames)

  • 이종수;정석호
    • 한국연소학회지
    • /
    • 제5권2호
    • /
    • pp.69-78
    • /
    • 2000
  • Reattachment characteristics of laminar flames in partially premixed jets are studied for propane fuel mixed with air. As the flow rate decreases, liftoff height is decreased nonlinearly and the flame reattaches to a nozzle at a certain liftoff height. Using a jet theory by taking into account a virtual origin, it is predicted that flow velocity along a stoichiometric contour has a maximum value near nozzle. With this velocity characteristics, it is shown that reattachment mechanism can be explained by a balance between flame speed and flow velocity. Predicted displacement speeds at reattachment and liftoff agree qualitatively well with experimental findings.

  • PDF

흡기관내 와류생성기가 압축착화엔진의 수분 농도 분포 및 연소성능 향상에 미치는 영향 (Effect of Vortex Generator in Intake Pipe on the Moisture Concentration Distributions and Combustion Performance in a CI Engine)

  • 정석훈;서현규
    • 한국분무공학회지
    • /
    • 제23권4호
    • /
    • pp.169-174
    • /
    • 2018
  • In this work, optimization of blade shape for the improvement of mixture formation and vortex of intake port was performed by numerically, and the combustion performance of CI engine with optimized blade shape was investigated. To achieve this, 3 types of blade shape were studied under the different air flow mass conditions and the numerical results were investigated in terms of humidification water, moisture concentration, and velocity distributions. Evaporated liquid mass was also compared under various test conditions to reveal the turbulent intensity in an intake port. It was observed that the optimized blade shape can improve the humidification water, moisture concentration, and velocity distributions of intake port inside. The evaporated liquid mass was also increased under the conditions with blade. Especially, low NOx emissions was observed with optimized blade condition.

슬러지 순산소 유동층 연소특성 (Combustion Characteristics of Waste Sewage Sludge using Oxy-fuel Circulating Fluidized Bed)

  • 장하나;성진호;최항석;서용칠
    • Korean Chemical Engineering Research
    • /
    • 제55권6호
    • /
    • pp.846-853
    • /
    • 2017
  • 순환유동층 모사장치와 $30kW_{th}$급 파일럿 연소기를 활용하여 슬러지 순산소 유동층 연소특성을 살펴보았다. 순환유동층 모사실험에서 최소유동화속도($U_{mf}$)는 0.120 m/s로 계산되었고, 고속유동화를 위한 공탑속도는 2.5 m/s 이상으로 결정되었다. 파일럿 연소실험에서는 일반공기 및 21~40% 순산소 연소실험이 수행되었다. 배출가스 온도의 경우 21~25% 순산소 연소가 일반공기 및 30% 이상의 순산소 연소보다 상대적으로 높았다. 또한, 배출가스 중 $CO_2$ 배출농도가 21~25% 순산소 연소 범위에서 80% 이상으로 나타났다. 이를 고려한 전반적인 연소특성을 살펴 보았을 때 25% 순산소 연소가 본 슬러지 연료 연소에 대한 장시간 운전에 있어 보다 적합한 것으로 사료된다.

밀도에 따른 지표 연료의 연소실험 분석 (A Combustion Analysis of Surface Fuel Burning Experiment According to Density Variation)

  • 김응식;김장환;김동현;박형주;김정훈
    • 한국화재소방학회논문지
    • /
    • 제24권1호
    • /
    • pp.1-7
    • /
    • 2010
  • 본 연구에서는 지표화의 대표적인 연소물질인 굴참나무(Quercus Variabilis: Q.V.)와 소나무(Pinus Densiflora: P.D.) 낙엽을 이용하여 연료의 밀도 변화에 따른 열 유체속도, 연소온도, 질량감소속도, 화염높이 및 연소시간 등의 연소특성을 분석하였다. 바스켓 높이는 10cm, 지름 20, 30, 40 그리고 50cm의 원통형 바스켓에 밀도별로 각각 채운 후 표면에 점화원을 인가하여 실험을 실시하였다. 침엽수종 낙엽의 경우 밀도와 지름의 증가함에 따라 질량감소속도, 화염지속시간, 화염의 높이 그리고 연소시간은 증가한 반면, 활엽수종 낙엽의 경우 질량감소속도와 화염높이는 증가하다가 감소하였으며 화염지속시간과 연소시간은 증가하였다. 또한, 기체유속 및 온도는 화염 높이가 커질수록 증가하는 경향을 나타내었다.